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DESIGNATIONS AND ABBREVIATIONS 

CDCC – coupled-channels with a discretized continuum 
DEA – dynamical eikonal approximation 
TDSE – time-dependent Schrodinger equation 
DWBA  – distorted-wave Born approximation 
MeV – Mega electron volt, is the measure of an amount of 

kinetic energy gained by a single electron accelerating 
from rest through an electric potential difference of one 
volt in vacuum 

ISOLDE – The Isotope mass Separator On-Line facility., the 
radioactive ion beam facility at CERN and a unique 
source of low-energy beams of radioactive nuclides 

HIE-ISOLDE – High-Intensity and Energy upgrade of ISOLDE 
CERN – European Organization for Nuclear Research  
ReA12  
 
 

– The reaccelerator facility (ReA) at the National 
Superconducting Cyclotron Laboratory (NSCL) at 
Michigan State University 

MSU – Michigan State University 
DVR – discrete-variable representation 
2D – two dimensional 
the USA – United States of America 
RIBs – Radioactive ion beams 
JINR  – Joint Institute for Nuclear Research (in Dubna, Russia) 
1 n halo – one neutron halo nucleus 
Eq. – equation 
LU 
decomposition 

–  lower–upper  decomposition 

Fig. – figure 
SE – Schrodinger equation 
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INTRODUCTION 

 

General description of the research. The dissertation work is devoted to the 
investigation of the Coulomb breakup of 11Be halo nuclei within the time-dependent 
quantum-mechanical approach.  

Exotic structures and phenomena in the proximity of the proton and neutron 
driplines were discovered in the 1980s due to the development of radioactive beams 
[1, 2]. A striking example is the halo nuclei. Halo nuclei are usually described within 
the few-body model: a core, which contains most of the nucleons plus one or two 
valence nucleons. Due to their very short lifetime, halo nuclei are studied through 
indirect techniques such as breakup reactions in which the halo nucleon dissociates 
from the core through the interaction with the target [3]. A number of breakup 
measurements were made even when the radioactive beam intensity was rather low. 
The breakup induced by the Coulomb interaction between projectile and target is one 
of the main mechanisms to describe exotic processes [2, 4].  

The neutron halo effect is caused by the presence of weakly bound states of 
neutrons located near the continuum. The small value of the binding energy of a 
neutron (or a group of neutrons) and the short-range nature of nuclear forces lead to 
the tunneling of neutrons into the outer peripheral region over large distances from 
the core of the nucleus [5]. The most famous nuclei having the structure of a neutron 
halo are 11Be, 11Li, 15C, 19C and etc. They have small binding energies, anomalously 
large sizes, narrow momentum distributions of fragments after the breakup, large 
interaction cross sections and electromagnetic dissociation [5].   

Among the neutron halo nuclei, the 11Be nucleus is of particular interest. In the 
simplest approximation, it can be considered as a two-particle system consisting of a 
10Be core and a weakly bound neutron. A number of computational approaches were 
developed to describe the breakup of two-body projectiles, i.e., one-nucleon halo 
nuclei of 11Be: perturbation expansion [6, 7], adiabatic approximation [8], eikonal 
model [9], coupled-channels with a discretized continuum (CDCC) [10, 11], 
dynamical eikonal approximation (DEA) [11] and numerical integration of a three-
dimensional time-dependent Schrodinger equation (TDSE) [12, 13, 14, 15].  

The methods mentioned above are mainly applied to  high and intermediate 
beam energies in the breakup reaction of 11Be on a heavy target.  For intermediate 
beam energies (near 70 MeV/nucleon) there are rather accurate experimental data 
[16, 17] and theoretical analyses with different approaches [11, 18, 19]. However, for 
lower energies only a few theoretical works have been performed so far [11, 18-22]. 
For instance at [19] the breakup reaction 11Be+208Pb->10Be+n+208Pb for energies of 5, 
10 and 30 MeV/nucleon was investigated within the distorted wave Born 
approximation (DWBA). Nevertheless, the applicability of this approach to low 
energies is questionable and must be justified [19]. 

An attempt was also made to calculate the breakup of 11Be on the Pb target at a 
beam energy of 20 MeV/nucleon with the dynamical eikonal approximation [11, 18]. 
However, this approach is a high-energy reaction model [11] and its adequate 
extension to low-energy (below 40 MeV/nucleon) has not yet been realised [5]. Thus, 
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although the region around 10 MeV/nucleon is of great interest, since this is the 
energy range of HIE-ISOLD at CERN and the future ReA12 at MSU, it has hardly 
been investigated theoretically so far [3]. 

In the present work, we fill this gap by generalizing to this area the theoretical 
model developed in [12, 13, 23] and successfully applied to the breakup of halo 
nuclei 11Be [12, 13], 15C [13], and 17F [23] at higher beam energies. In this model, the 
time-dependent Schrödinger equation for a halo-nucleon is integrated with a non-
perturbative algorithm on a three dimensional spatial mesh. The use of the discrete-
variable representation (DVR) in 2D angular space and high-order finite differences 
for the radial part of the wave function allows avoiding the multipole expansion of 
the time-dependent Coulomb interaction between the projectile and the target [12, 
24]. Another attractive feature of the method is its flexibility to the choice of the 
interactions between the halo-nucleon, the core and the target [13] and in the 
definition of the projectile trajectory which can be quasiclassically treated 
simultaneously with the Schrödinger equation for the weakly-bound halo nucleon of 
the projectile [3, 25]. 

We extend the theoretical model to the low-energy region and investigate its 
convergence and stability here [3]. With this approach we perform calculations of the 
breakup cross section of 11Be on a heavy target (208Pb) at 5–30 MeV/nucleon taking 
into account Coulomb and nuclear interactions between the projectile and the target 
[3]. We apply the classical consideration (classical trajectories) for a heavy and fast 
11Be projectile and a quantum approach for a light and slow neutron, where the 
relation pBe = (3800 − 1100) MeV/c >> pn ∼ 40 MeV/c for their momentums is 
satisfied. We consider the region EBe = (770 − 55) MeV>>En ∼ 1 MeV for the 
projectile and the halo neutron energies during the breakup collisions, which further 
justifies the semiclassical approach. To quantify how good the semiclassical approach 
with decreasing the projectile energy is, we also performed calculations with 
quantum-quasiclassical approach [25, 26], which includes the effect of deformation 
of the projectile trajectory and the transfer of energy from target to projectile and vice 
versa during a collision [3]. We also analyse in the frame of this model the influence 
of the 11Be resonant states 5/2+, 3/2− and 3/2+ [17, 27, 28] on the breakup processes. 
This analysis demonstrates the possibility of studying low-lying resonances in halo 
nuclei using their breakup reactions. The method can potentially be useful for 
interpretation of low-energy breakup experiments on different targets in studying the 
halo structure of nuclei [3]. 

Relevance of the research topic. Nowadays the greatest interest in nuclear 
physics is associated with the investigations of the behavior of atomic nuclei under 
extreme conditions that can be created in modern laboratories. The parameters, which 
characterize nuclear states and take extreme values, can be different: energy, 
deformation, angular momentum, etc. [29]. The study of radioactive nuclei is of the 
particular interest. These are neutron or proton-excess nuclei, which are unstable and 
decay via β-decay. The investigations with beams of radioactive nuclei have opened 
new prospects in studying the structure of the atomic nucleus and have found wide 
applications in other areas of physics, including nuclear astrophysics. The 



7 

 

fundamental problems of nuclear physics, for example, the determination of the 
nucleon drip-line, the synthesis of superheavy elements, the evolution of the shell 
structure on the way to the limits of the existence of atomic nuclei (the disappearance 
and appearance of magic numbers) are studied in the reactions with beams of 
unstable nuclei [29]. New facilities for studying exotic nuclei with parameters that far 
exceed existing ones are planned and built in Japan, Germany, Canada and the USA. 
In the future, it is expected to get important results concerning the fundamental 
questions of the structure of atomic nuclei and the mechanisms of nuclear reactions. 
The studies with radioactive nuclei have already led to a fundamental result: in some 
weakly coupled light nuclei located on the boundary of nucleon stability, an 
interesting phenomena of nuclear structure - the halo has been discovered. The 
structure of nuclei with halo, located on the drip-line, is one of the most interesting 
problems in the physics of radioactive ion beams (RIBs)[29]. 

A characteristic feature of the physics of exotic nuclei is the close relationship 
between the mechanism of nuclear reaction and the structure of the nucleus. The most 
widely used reaction for studying halo nuclei is the Coulomb breakup reaction, which 
can be considered as the transition of a nucleon from a halo nucleus to a continuum 
due to varying Coulomb field between the nucleon and the target in collisions. Thus, 
the Coulomb breakup is one of the main tools in the study of halo nuclei. The 
breakup cross section provides useful information on the halo structure [30]. 

Within the framework of the dissertation work, for a more detailed study of the 
mechanism of the halo structure, it was planned to include low-lying resonances in 
various partial and spin states of the 11Be nucleus in the calculation of the breakup 
cross section [3, 31]. The Coulomb breakup of the halo nuclei is studied numerically, 
by solving the time-dependent Schrödinger equation on an angular Lagrange and 
quasi-uniform radial grid. The developed computational scheme opens up new 
possibilities in the study of the Coulomb, as well as nuclear, breakup of halo nuclei 
on both heavy and light targets [3]. 

One of the relevant problems of the work is to study the contribution of low-
lying resonances to the breakup cross section. Since in the previous calculations only 
two bound states of the 11Be nucleus were taken into account (the ground state ½+ and 
the first excited state ½-) [11-13, 24, 32], it is assumed that taking into account low-
lying resonances will improve the theoretical description of the experimental data on 
the cross section for the breakup reaction 11Be + 208Pb → 10Be + n + 208Pb at 
intermediate energies [16, 17] and explain the appearance of visible peaks in the 
energy range 1.23, 2.78, and 3.3 MeV, which corresponds to the position of the peaks 
of resonances 5/2+, 3/2- and 3/2+ [27, 28]. It should be noted that these resonances 
were identified by the states obtained experimentally by the group of Fukuda et al. 
[17] in the 11Be + 12C breakup reaction at 70 MeV/nucleon. Also, special attention 
should be paid to study of the influence of nuclear effects on the breakup cross 
section, which makes it possible to extract more detailed information on the structure 
of exotic nuclei.  

Thus, the presented tasks of this dissertation work have priority directions not 
only in Kazakhstan, but also in the worldwide. Research on this topic is one of the 
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rapidly developing fields of modern nuclear physics of all major scientific centers of 
the world. The obtained results are quite competitive on the international level. These 
studies are not only of academic interest, but also of great practical importance. The 
expected results are very important and relevant for the interpretation and planning of 
future experiments with exotic nuclei, since at the present time there is a substantial 
lag in the theoretical models from the needs of the experiment in this field. The key 
problem to be solved by the tasks of the dissertation work is the expansion of our 
approach to the low-energy area, since this area has hardly been studied both 
theoretically and experimentally. Thus, the obtained results will be important for 
testing existing theoretical models and for the practical application of theoretical 
calculations in experiments to investigate the breakup of halo nucleus at low-energy 
radioactive beams. 

The goals of the research is an investigation of low-lying resonances in the 
Coulomb breakup of 11Be halo nuclei on heavy target (208Pb) from intermediate (70 
MeV/nucleon) to low energies (5 MeV/nucleon) within non-perturbative time-
dependent quantum-mechanical approach.  

To achieve these goals, it is necessary to solve the following objectives: 

– to select and analyse  parameters of the potentials between the neutron and 
10Be core for description of different partial and spin states of the 11Be nucleus; 

– to investigate the influence of low-lying resonance states (5/2+, 3/2- and 3/2+) 
to the Coulomb breakup of 11Be nucleus on a heavy (208Pb) target within the 
semiclassical and quantum-quasiclassical time-dependent approaches; 

– to study the contribution to breakup of nuclear interaction between projectile 
and target; 

– to probe how good is the linear trajectory approach for projectile motion at 
low beam energies; 

– to explore the excitation of 11Be in collision with 208Pb target. 
The objects of the research are a halo nucleus, 11Be, low-lying resonances 

and breakup cross-section. 
The subject of the research is quantum mechanics, the work is devoted to the 

numerical solution of the time-dependent Schrödinger equation, exact calculations of 
the breakup cross sections by quantum-mechanical approach. 

Research methods: numerical methods for solving the stationary and time-
dependent Schrödinger equations: reverse iteration method, sweep method, the 
splitting up method, the discrete variable representation, finite-difference technique in 
quasi uniform radial grid. 

The main statements for defense: 
1) An account of the low-lying resonance states of 11Be describes the 

experimental data on the breakup reaction 11Be+208Pb->10Be+n+208Pb cross sections 
at 69 MeV/nucleon with the accuracy of 1-2% and explains the appearance of visible 
peaks at energies of 1.23, 2.78, 3.3 MeV, which correspond to the positions of the 
5/2+, 3/2- and 3/2+ resonances, respectively. 
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2) The breakup cross sections of the halo nucleus 11Be on a heavy (208Pb) target 
at low collision energies (30-5 MeV/nucleon), demonstrate a visible peak due to the 
5/2+ resonant state (Er=1.23 MeV).  

3) The differences between the linear and curvilinear (realistic) trajectories of 
the projectile in the analysis of the breakup reaction 11Be+208Pb->10Be+n+208Pb is 
about several percent in the energy range 30-20 MeV/nucleon, for 10 MeV/nucleon 
the discrepancy is 10% and reaches a value of more than 20% at 5 MeV/nucleon, 
which exceeds the effect of nuclear interaction. 

Scientific novelty of the work. The novelty and originality of research lies in 
the fact that for the first time: 

1) The low-lying resonant states (5/2+, 3/2- and 3/2+) of the 11Be were included 
in the analysis of the breakup reaction 11Be+208Pb->10Be+n+208Pb by the numerical 
integration of the time-dependent Schrödinger equation. 

2) The breakup cross sections of one-neutron halo nucleus of 11Be on a heavy 
(208Pb) target are calculated by solving the time-dependent Schrödinger equation with 
a non-perturbative algorithm in a wide range of beam energies (70-5 MeV/nucleon). 

3) The inelastic cross sections for the excitation of the ½- state of 11Be in a 
collision with 208Pb target at low beam energies are evaluated with inclusion of 
Coulomb and nuclear interactions between the target and projectile. The influence of 
the curvilinear trajectory for projectile motion is analyzed with decreasing the 
collision energies. 

The theoretical and practical significance of the research outcomes. 

Theoretical significance of the study: exotic nuclei are one of the most 
intensively studied objects in modern few-nucleon nuclear physics. The theoretical 
study of halo nuclei within the framework of the non-stationary quantum-mechanical 
approach is relevant in connection with planning experiments on the study of light 
nuclei in radioactive beams. 

The developed computational scheme in this dissertation work opens new 
possibilities in investigation of Coulomb, as well as nuclear, breakup of exotic nuclei 
on heavy, as well as, light targets. This theoretical model can potentially be useful for 
interpretation and planning of low-energy experiments in studying the halo structure 
of the nuclei. The obtained results at lower energies are important in connection with 
the research program in this area at HIE-ISOLD (CERN) and ReA12 (MSU).  

The validity and reliability of the research results. 
The results of dissertation work were successfully presented at high-level 

international scientific conferences and formed the basis of publications in high-
ranking journals such as European Physical Journal A, Physics of Particles and 
Nuclei letters, Acta Physica Polonica B Proceedings Supplement, Eurasian Journal of 
Physics and Functional Materials. The achieved scientific results are in good 
agreement with the existing works of other foreign authors in this field. 

Personal contribution of the author.  
In the framework of the dissertation research, the author was directly involved 

in setting goals, in writing and debugging a computational program, processing and 
analyzing of obtained data, interpreting the results, preparing articles for publication 



10 

 

as a full member of the scientific group. The contribution of the applicant to the 
results of the dissertation is essential. 

Approbation of dissertation work. The materials of the dissertation work 
were reported at the following international conferences: 

1 "IV International Scientific Forum-Nuclear Science and Technology". RSE 
ME INP (Almaty, Kazakhstan, 2022).  

2 The LXXI International conference "NUCLEUS – 2022. Nuclear physics and 
elementary particle physics.  Nuclear physics technologies", Moscow State 
University, (Moscow, Russia, 2022). 

3 The International Workshop on Elementary Particles and Nuclear Physic, 
RSE ME INP (Almaty, Kazakhstan, 2022).  

4 I International School-Conference “Atom. The science. Technology" RSE 
ME INP (Almaty, Kazakhstan, 2021).  

5 The XXV International Scientific Conference of Young Scientists and 
Specialists (AYSS-2021), Joint Institute for Nuclear Research (JINR), (Almaty, 
Kazakhstan, 2021). 

6 XXIII International School on Nuclear Physics, Neutron Physics and 
Applications, Institute for Nuclear Research and Nuclear Energy, (Varna, Bulgaria, 
2019).  

7 Euroschool on Exotic Beams, KU Leuven, (Aarhus, Denmark, 2019).  
8 European Nuclear Physics Conference EuNPC, INFN, (Bologna, Italy, 2018) 

and others. 
The results of the research were reported at the seminar of the N.N. 

Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research 
on July 2020. 

Publications. 

Based on the results of the dissertation work, 6 printed works were published, 4 
of that were published in journals included in the database indexed by SCOPUS 
scientometric databases, 2 - in the journals included in the list recommended by the 
Committee for Quality Assurance in the Sphere of Education of the Ministry of 
Education of the Republic of Kazakhstan.  

Articles in journals indexed by scientometric databases SCOPUS and Web of 
Science: 

1 Valiolda D., Melezhik V.S., Janseitov D. Investigation of low-lying 
resonances in breakup of halo nuclei within the time-dependent approach // The 
European Physical Journal A. – 2022. – Vol. 58. –P 34 1-34 13. 

2 Valiolda D., Melezhik V.S., Janseitov D. Study of bound and resonance 
states of 11Be in breakup reaction // Eurasian Journal of physics and functional 
materials. –2022. –Vol. 6, № 3. –P. 165-173.  

3 Valiolda D., Melezhik V.S., Janseitov D. Study of nuclear contribution to 
breakup cross section of 11Be halo nuclei within time-dependent approach // Physics 
of Particles and Nuclei Letters. –2022. –Vol. 19, №5. –P. 477-480. 

https://link.springer.com/article/10.1134/S1547477122050442
https://link.springer.com/article/10.1134/S1547477122050442
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4 Valiolda D., Melezhik V.S., Janseitov D. Contribution of Low-lying 
Resonances in the Coulomb Breakup of 11Be Halo Nuclei// Acta Physica Polonica B 
Proceedings Supplement. –2021. –Vol. 14, № 4. –P. 687-692. 

Articles in scientific journals of the Republic of Kazakhstan:  
1 Valiolda D.S., Zhaugasheva S.A., Janseitov D.M., Zhussupova N.K. The 

study of the neutron halo of the 11Be nucleus taking into account the influence of an 
external field// NEWS of the National Academy of Sciences of the Republic of 
Kazakhstan. –2018. –Vol. 318, №2. –P. 12-20. 

2 Valiolda D.S., Janseitov D.M., Zhaugasheva S.A., Zhussupova N.K. 
Investigation of the neutron halo of the 11Be nucleus// Recent Contributions to 
Physics. –2018. –Vol. 64, №1. –P. 81-88. 

The structure and volume of the thesis. The dissertation consists of an 
introduction, three sections, a conclusion, a list of references and 3 appendices. The 
volume of the dissertation is 90 pages, containing 34 figures and 11 tables, the 
number of used literature sources is 62.  

The first section is devoted to the determination of the exotic nuclei and the 
description of the 11Be nucleus as a halo structure. The main features of the halo 
structure, such as nuclear density, large radii, and low binding energies and others are 
considered. A literature review carried out on theoretical studies of the 11Be halo 
nucleus, as well as the experiments performed for the breakup reaction of 11Be are 
discussed in this section.   

The second section formulates the nonperturbative time-dependent approach 
in breakup reactions. The modeling of the physical problem is described here. In this 
model, the time-dependent Schrödinger equation for a halo-nucleon is integrated with 
a non-perturbative algorithm on a three dimensional spatial mesh. The use of the 
discrete-variable representation in 2D angular space and high-order finite differences 
for the radial part of the wave function allows avoiding the multipole expansion of 
the time-dependent Coulomb interaction between the projectile and the target. The 
computational methods used for solving stationary and non-stationary Schrodinger 
equations are described in section Ⅱ. Also the results of solving eigenvalue problem: 
the radial wave functions and energy spectrum, the parameterization of the 
interaction between the neutron and core are presented.  

The third section is devoted to the discussion of obtained results: the 
calculation of breakup reactions. A considerable contribution of low-lying resonances 
(5/2+, 3/2− and 3/2+) and the nuclear interaction between the target and projectile into 
breakup of 11Be on the 208Pb target were found at low beam energies (5 - 30 
MeV/nucleon). The satisfactory accuracy of the semiclassical approach with linear 
trajectories of the projectile was also demonstrated for the 11Be breakup cross 
sections up to 20 - 30 MeV/nucleon. It is shown that this approach is also useful at 
lower energies, where, however, a more adequate description is provided by the 
quantum-quasiclassical approach. The convergence of the computational scheme and 
accuracy of research are demonstrated in the considered energy range (5 - 69 
MeV/nucleon), including low-lying resonances in various partial and spin states of 
11Be.  

https://www.actaphys.uj.edu.pl/S/14/4/687/pdf
https://www.actaphys.uj.edu.pl/S/14/4/687/pdf
https://www.actaphys.uj.edu.pl/S/14/4/687/pdf
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The Conclusion formulates the main results obtained in the dissertation and is 
devoted to concluding remarks. 
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1 THE HALO STRUCTURE 

Due to the rapid development of accelerators and becoming of them more 
sophisticated and powerful, in the following 40 years, besides the 300 stable nuclear 
species, 1300 radioisotopes were produced, identified and studied (see nuclear map in 
figure 1). Most of the knowledge acquired until now in the field of nuclear physics, 
has been obtained through nuclear reactions [30]. 
 

 
 

Figure 1     Nuclide chart. In black the stable isotopes, forming the valley of stability 
are presented. In red the nuclei decaying by    and in blue the nuclei decaying by    
processes are illustrated. The line that separates the (coloured) unstable nuclei from 

the unbound ones (not represented or in grey) is called the dripline [33].  
 

In the late XX century, a crucial step forward was taken. In 1985, at the 
Lawrence Berkley Laboratory, I. Tanihata and his collaborators performed the first 
experiment using a beam of a radioactive ion [1]. This experiment consisted on 
beams of Li and Be isotopes impinging on Be, C and Al targets at energies of 790 
MeV/nucleon. In this high energy regime, the interaction cross section (σI) is 
approximately equal to the area calculated from the sum of the nuclear radius of 
target (Rt) and projectile (Rp),  
 

σI=π(Rt +Rp)
2.                                         (1.1) 

 
“The nucleus 11Li showed a remarkably large radius, suggesting a large deformation 
or a long tail in the matter distribution” [1]. These were the first words pointing to a 
new structure, which later was labeled as halo. 
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The term halo was first coined by P.G Hansen and B. Jonson in 1987 [34]. 
They ruled out the possibility of a nuclear deformation of 11Li and calculated, 
considering a two body structure with 9Li and 2n, the decay length of the 2n wave 
function was           ,  

             ,                                                    (1.2) 

 
with   is the reduced mass and B is the binding energy. The “long tail in the matter 
distribution” suspected by Tanihata and collaborators [1] was called a neutron halo 
and other nuclei with similar properties were found later. Examples of halo nuclei are 
6He, 11Li (which are two-neutron halo nuclei), 11Be, 17,19C, 22N (which are one neutron 
halo nuclei), or 8B (which is a candidate for a proton halo nucleus) and others.  

In general, a halo nucleus is a system composed of a compact core, formed by 
most of its nucleons, and a diffuse halo formed by one or two weakly bound 
nucleons. In principle both, proton and neutron, can form a halo. However, in the 
case of protons, the Coulomb barrier tends to confine the nucleons inside the nucleus, 
thereby preventing the development of a halo structure. Such structures are observed 
close to the driplines, where there is an excess of either protons or neutrons that still 
can be bound to the nucleus but with very low binding energy. Since the core 
attraction is weak, these nucleons can be found at large distances of the center of the 
nucleus. In particular, when the last nucleon is in an s-orbit, it has no centrifugal 
barrier and, hence, it may be found particularly far. Saying it with quantum 
mechanics correctness, the wave function of these particles has a long tail, i.e. their 
density is not negligible up to abnormally large radii, compared to other nuclei with 
the same mass [33].  

An often suitable representation of the nuclear density is given by the Fermi-
Dirac distribution:                ,                                                     (1.3) 

 
where r is the radius from the center of the nucleus,              being     a 
constant between 1.2 and 1.44 fm, A is the mass number of the nucleus and a the 
diffuseness, that models the sharpness of the density fall, which can also be 
understood as a measure of the thickness of the surface. Large radius and diffuseness 
parameters can be used for describing the densities of halo nuclei [33]. 

Up to now, there is no generally accepted definition of halo nuclei. However, 
following the definition of Riisager, Fedorov, and Jensen [35]: “Quantum halos are 
defined as systems with dominating few-body structure and radii large compared to 
the sizes of the classically allowed regions”. This definition emphasises the three 
main halo characteristics: 

1) Halo nuclei exhibit a strong cluster structure. That is to say, they are well 
described as a core plus one or two neutrons;  
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2) Halo nuclei have a large matter radius in comparison with the range of the 
nuclear interaction. This is explained in the few-body model by the fact that the halo 
neutrons have a high probability of being at a large distance from the core.  In other 
words, their wave function is assumed to tunnel far outside the classically allowed 
region. This region corresponds to the positions the halo neutrons would occupy if 
their relative motions to the core were treated classically. For example, in a two-body 
structure (i.e. for one- neutron halos) these positions are those at which the interaction 
potential is lower than the binding energy of the system. This second condition 
implies the third one;  

3) Halo nuclei are weakly bound, i.e. the separation energy of the halo neutrons 
is very low. This two- or three-body structure can therefore be easily broken. 

This exotic feature in nuclear physics is of great interest not only because it 
constitutes a stringent test for the available nuclear models, but also because it opens 
up new research fields in nuclear science. Halo nuclei are therefore the focus of 
numerous theoretical and experimental studies [33]. 
 

1.1  The 
11

Be halo nucleus 

Among the halo nuclei, the 11Be nucleus is of particular importance, since the 
relative simplicity of its structure allows accurate theoretical studies. In fact, bound 
states of the 11Be nucleus can be described quite well as a 10Be core and a weakly 
bound neutron, as illustrated schematically in figure 2. 

 
 

Figure 2     A schematic representation of 1 n halo nucleus of 11Be. 
 

The berillium is the fourth element in the periodic table, what in turn means 
that it has 4 protons. The particular case of 11Be has, as its name indicates, 11 
nucleons, the 4 protons plus 7 neutrons. The only stable isotope of berillium is 9Be 
which has an structure that may be thought of as two alpha particles bound together 
by a neutron. That neutron plays a role comparable to the one that the electron does in 
a covalent bond. Adding another neutron 10Be is obtained, which has the same 
structure, but with two neutrons making this kind of covalent binding. The 10Be 
nucleus (     ) decays through    to 10B (     ) with a half-life of          
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    years, so it may be said to be such an stable one. The addition of an extra neutron 
brings a completely different structure to the stage. The half-life of 11Be (       ), 
decaying through    to 11B (       ), is            s (1012 times lower) [36], 

so the experimental requirements to study this nucleus will be more challenging. 
Using the standard independent-particle level ordering (see figure 3a), as the 

10Be (Z=4, N=6,      ) does not present a closed shell structure, an additional 
neutron should just occupy the close-in-energy p1/2 orbit, as it happens in 15O. Despite 
that, as it is observed in figure 3b, this is not what happens. Within this simple single-
particle picture, the ground state of 11Be is formed by adding a neutron to the s orbit 
sd-shell (  = 1/2+) due to an inversion between the s1/2 and the 1p1/2 levels [33]. 

 

 
 

Figure 3     a) Shell distribution and gaps between them following the Standard 
Nuclear Shell Model.  

b) Energy difference between the p1/2 and the s1/2 shells for N = 7 as the number of 
protons is reduced. Plot from P.G. Hansen and J.A. Tostevin [37]. 

 
The comparison of the energy needed for exciting the 10Be (3368 keV) 

compared to the energy of the first excited states of 11Be (320 keV) and 12Be (2101 
keV) reinforces the statement that the shell is closed at N = 6. The closed shell of the 
10Be nucleus, the s-orbit of the last neutron and the low binding energy, all together 
sum up into becoming the 11Be a weakly bound one-neutron halo nucleus with a 10Be 
core. 

Schematically, the wave function of the ground state of 11Be can be written as  
 

|11Be            |10Be (0+)⦻            .                                (1.4) 

 
The neutron separation energy is Sn=501.6 keV. Despite being low, it is high 

enough for the inverted p-orbit to be below the threshold, so there is one bound 
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excited state (Jπ = ½-), which lies at Ex= 320.04(10) keV above the ground state (Sn = 
181.6 keV),  
 

|11Be        |10Be (0+)⦻                                             (1.5) 

 
It is possible to populate this state through an E1 transition from the ground 

state, and it is remarkable that with a strength of B(E1) = 0.116 ± 012 e2fm2 [38], it is 
the strongest B(E1) measured between bound states.  

In [39], the extra configurations resulting from the coupling of excited states of 
the core with the valence particle, have been interpreted within the particle-rotor 
model, assuming a permanent deformation of the 10Be nucleus (β= 0.67). Other works 
[40,41], use a particle-vibrator model, treating the excitation as a result of surface 
excitations of the 10Be core. Independently of the model, in these extra configurations 
the neutron is in a d-orbit, so they are not halo configurations (halos are only 
observed in s and p orbits). In the ground state, the halo structure is only due to the 
first and main term                       ,  which will determine in a large extent 

the dynamics of the reaction. 
 
1.2  The role of nuclear reactions 

The energies used for studying nuclear reactions range from the few keV to 
hundreds of GeV. The different energy regimes are used for exploring different 
features of the nuclei and for exploring different areas of the nuclide chart. The 
higher the energy, the more reaction channels will be opened and the deeper the 
structure can be digged in. On the other hand, reactions at low energies are useful for 
studying low-lying excited states, the shell structure (by means of transfer reactions, 
for instance) and dynamic phenomena, like the Coulomb nuclear interplay. This is the 
case of reactions at energies around the Coulomb barrier.  

The energy of the reaction is not the only parameter to take into account in 
nuclear reactions. Different experiments may explore different features of the nuclei 
focusing on different reaction channels. In the case of loosely bound nuclei, the 
assortment of experiments that can provide relevant data is extensive. Some examples 
of experiments that studied 11Be have been selected from literature data [17, 36, 38, 
42, 43, 44] to illustrate the information on the structure and the reaction dynamics 
that can be extracted from experiments of different nature. 

– 
11Be(p,p)11Be, 11Be(    )11Be: The elastic and inelastic scattering with 

protons, usually referred to as (p,p) and (    ) reactions, respectively, has been 
studied in inverse kinematics at E(11Be) = 63 MeV/A, 1H(11Be,11Be)1H, 
1H(11Be,11Be )1H [42]. With this experiment the bound states in 11Be could not be 
resolved, but the resonance at Ex =1.78 MeV (Jπ= 5/2+) was observed. Other 
resonances at higher energies were not resolved either.  

– 9Be(t,p)11Be: The protons detected after the two-neutron transfer to a 9Be 
target giving information on the states of the 11Be populated. Measuring the gamma 
ray emitted after the population of the bound excited state, the energy and the lifetime 
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were determined to be Ex = 320.04± 0.10 keV,   = 116±15fs, respectively. From this 
lifetime measurement the extracted strength is B(E1) = 0.116± 0.012 e2fm2 [38]. 

– 
208Pb(11Be, 10Be+n)208Pb: Exclusive breakup measurements, in which the 

outgoing neutron and 10Be are measured in coincidence, have been performed at 
RIKEN at energies  ~70 MeV/u [16, 17] and at GSI at energies ~520 MeV/u [44]. 
They have provided information on the direct Coulomb breakup probability, which in 
loosely bound nuclei on heavy targets is dominated by an E1 transition. Although the 
extracted B(E1) distributions differ quantitatively among the different experiments, 
they all predict a large B(E1) strength near the breakup threshold, as expected for a 
halo nucleus.  

– 
12C(11Be, 10Be+n)12C: The breakup measurements on light targets (ej. 12C), in 

which nuclear effects are dominant, allowed the identification of low-lying 
resonances and their spin-parity assignment. In [17] the resonance states at Ex = 1.78 
MeV (Jπ= 5/2+) and Ex = 3.41 MeV (Jπ= 3/2+) are observed.  

As already indicated above, experiments aimed at studying the breakup of 11Be 
halo nucleus at a heavy target (208Pb) were performed at intermediate (69 and 72 
MeV/nucleon) [16, 17] and at high beam (520 MeV/nucleon) [39] energies. Also 
many theoretical calculations and processing of these experiments [11, 12, 13, 14, 45, 
46] have been carried out. However, in that works only the bound states of 11Be were 
included in calculations. Note that at Riken (Japan) Fukuda et.al. observed 
experimentally the low-lying resonances in the nuclear induced breakup of 11Be on 
the light target (12C) at 70 MeV/nucleon [17]. In particular, we assume that in the 
experimental data for the reaction 11Be + 208Pb -> 10Be+n+208Pb [16, 17], there are 
visible peaks near the energies 1.23, 2.78 and 3.3 MeV [27, 28], which correspond to 
position of resonances: 5/2+, 3/2- and 3/2+ [27, 3]. We suppose that taking into 
consideration of the resonant states 5/2+, 3/2− and 3/2+ improve the theoretical model 
describing the Coulomb breakup [3]. 

In the framework of this PhD thesis, we also extend the non-perturbative time-
dependent approach [12, 13, 23], for calculations of breakup cross section at low 
beam energies down to 5 MeV/nucleon, where no experimental data exists and 
investigate the contribution of the 11Be resonance states in this region [3, 31]. In 
addition, by comparing our calculations with few existing theoretical results [11, 18, 
19], we show the benefits of our approach. 
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2 NONPERTURBATIVE TIME-DEPENDENT APPROACH IN 

BREAKUP REACTIONS 

 

2.1  Model for describing neutron dynamics during collision 

The halo neutron is treated as a structureless particle weakly bound by the 
potential V(r) to the 10Be core nucleus, where r is the relative variable describing the 
distance between the neutron and the core. The dynamics of the halo neutron relative 
to the 10Be core in the breakup reaction 11Be+208Pb → 10Be+n+208Pb is described by 
the time-dependent Schrodinger equation 

                          [             ]                            (2.1) 

 
in the projectile rest frame, where        is the wave packet of the neutron relative 
the 10Be core. In this expression 
                                                                           (2.2) 

       is the Hamiltonian describing relative halo nucleon-core motion with reduced 
mass          , where   ,    and         are the neutron, 10Be-core, 
and 11Be masses, respectively. The potential      represents the sum of the l-
dependent central potential       and a spin-orbit interaction           . The 
interaction of the target nucleus with the projectile corresponds to the time-dependent 
Coulomb potential        , which is defined as 
                                                                             (2.3) 

 
where    and    are charge numbers of the core and target, respectively, and      is 
the relative coordinate between the projectile and the target, which represents the 
straight-line trajectory           , where b is the impact parameter orthogonal 
to  the initial velocity of the projectile    . This definition corresponds to previous 
models, accepted in the works [12, 14, 15].  

The time-dependent Coulomb potential         is written in the center of mass 
system associated with 11Be. When 11Be is far from the target, the Coulomb potential 
is zero. It acquires a maximum value, as seen in formula (2.3), if the target and the 
projectile approach at a minimum distance. After the collision, this time-dependent 
interaction         vanishes. Our task is to integrate the equation from the initial 
moment of time, where the target and the projectile are at a large distance, and then 
they approach each other and again scatter over large distances. We write down the 
system of two bodies 10Be + n, between them there is a nuclear interaction        , 
which is described at section 3.4. When a system of 10Be+n approach the target (T 
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(208Pb) as displayed at figure 4), the interaction between the target and the projectile 
must also be taken into account. This interaction is described by the Coulomb 
potential (Eq.(2.3)).  
 

 
 

Figure 4     Coordinates appearing in the definitions of Coulomb potential         
[Eq. (3)] [12, Fig 1.]. 

 
For the considered collisions, the approximation of linear trajectories is works 

well in this case. In [12], it was studied that taking into account the curvature of this 
trajectory gave a negligible correction at higher beam energies (~70 MeV/nucleon).  
How good is the linear trajectory approach for projectile motion at lower beam 
energies is studied at Section 3.5.   

 
2.2 The computational scheme of solving TDSE 

In order to correctly describe the breakup process, it is necessary to formulate 
the problem in a non-perturbative way. In this work, the time-dependent Schrödinger 
equation is integrated with a non-perturbative algorithm on a three-dimensional 
spatial grid, where it is assumed that the projectile moves along a classical trajectory 
and its interaction develops due to the difference between the Coulomb and nuclear 
interactions around the target. The method uses wave function values at grid points in 
angular space in the spirit of Discrete Variable Representation (DVR) methods (or 
Lagrange grid methods) [12, 24]. The radial functions are approximated using the 
high-order finite difference method (with a variable step) on a quasi-uniform grid [12, 
24, 47]. For the initial approximation of the wave function, an auxiliary problem is 
solved - a stationary SE with boundary conditions. The stationary problem is solved 
in the standard way, the angular variables are separated because there is no 
interaction with the target, and the radial SE is solved by the finite difference method 
[47 p.180-184]. The radial equation is solved on the same grid as the TDSE. But 
when a time-dependent equation is integrated, the angular part of TDSE is not 
separated from the radial variable due to the interaction [3] (the numerical methods 
used in the thesis are described at subsections 2.2 - 2.4).  
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2.2.1 Angular-subspace discretization 
We seek a solution        of TDSE (2.1) in spherical coordinates               as an expansion [12], 

          ∑ ∑                                      (2.4) 

 
over the two-dimensional basis 
       ∑                                                       (2.5) 

 

In this basis,                 , in general and thus       coincides with an usual 
spherical harmonic with a few possible exceptions for high   as explained below after 
Eq. (2.7). The symbol    represents the combination of the orbital momentum and its 
projection (l, m), and the sum over   is equivalent to the double sum 
 ∑  ∑  √   

   ∑   
      

                                                                               

 

The basis (2.5) is associated with a mesh. For the θ variable, the      √  mesh 

points     are defined as zeros of the Legendre polynomial  √  (      ). For the   

variable, the     √  mesh points are chosen as               √ . The total 

number N (              ) of grid points    (       )  is equal to the 

number of basis functions (2.5) in expansion (2.4) [24, 25]. This mesh is associated 
with the N weights    that are the products of the standard Gauss-Legendre weights 

over    by 2 /√ . The         are the elements of the N N matrix     inverse to 

the matrix with the elements            defined at the grid points    . The 

polynomials       are constructed from the Legendre polynomials        and       
so that they are orthogonal on the grid    

 ∫               ∑                   ,                     (2.7) 

 
for all   and     N. For most   and   , property (2.7) is automatically satisfied 
because the basis functions       are orthogonal and the Gauss quadrature  is exact. 

For these   the coefficients                in Eq.(2.5). However, in a few cases 
with the highest l and m values, some polynomials        have to be specially made 

orthogonal in the sense of the Gauss quadrature. With this choice, the matrix          

is orthogonal. 
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The radial components          in expansion (2.4) correspond to   (      )    where     |     is a spin state of a nucleus and   (      ) are 

the values of the spatial part of the nuclear wave function at the angular grid points   . Let us introduce the 2N-component vector                      . With respect 

to the unknown coefficients in expansion (2.4), the problem is reduced to a system of 
Schrodinger-type equations 

             [ ̂      ̂     ]                        (2.8) 

 

In this system,  ̂     and  ̂      are 2N 2N matrix operators representing H0 and Vc 

[Eq. (2.2) and (2.3)] on the angular grid. The elements of matrix   ̂     are defined 
by            {                       ∑         

          [                         ]        }     ,                (2.9) 

 
where       is the l-dependent central potential between the neutron and the core and         is the spin dependent spin-orbit neutron-core interaction in the spin state |s> 
[12, 13,14]. We neglect here the spin-mixing term in the interaction between the core 
and the nucleon during the collision with the target as in [12]. The time-dependent 

Coulomb operator  ̂      
             [              ]   ,                                (2.10) 

 
defined in Eq. (2.3) is diagonal in this representation and does not require the 
multipole expansion unlike other approaches based on the numerical integration of 
the Schrodinger equation for the halo neutron [14, 15].  

The DVR (2.9), (2.10) of the TDSE (2.1) permits different kinds of modeling l- 
and s-dependent interactions        and        between the core and the halo neutron. 
It allows one to include resonance interactions in various partial l and spin s states in 
the 11Be Hamiltonian (2.9).  

An attractive feature of the DVR is that the only nondiagonal part of the 
Hamiltonian is the angular part of the kinetic energy operator (2.9), which can be 
diagonalized fast by using of a split-operator method (it is described in detail at next 
subsection (2.2.2)). The splitting up method gives a fast convergence with respect to 
the numbers of grid points N (the number of basis functions in expansion (2.4)). The 
convergence of the method with respect to angular grid points N is discussed below 
at section (3.1). 
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2.2.2 Splitting-up method 
As it is discussed above, the problem is reduced to the Schrodinger-type time-

dependent radial equations coupled only through the nondiagonal angular part of the 
kinetic energy operator. This equation is propogated using a split-operator method, 
which permits fast diagonalization of the remaining nondiagonal part. The only 

nondiagonal part of the Hamiltonian in Eq. (8) is in the block matrices     ̂      
(Eq.(9)). For each spin state, they can be diagonalized by the simple unitary 

transform               [12]. The splitting-up method has been applied for the 

propagation in time                as  
             (        ̂)  (        ̂)  (         ̂)  (         ̂)        .      (2.11) 

 
Thus, the problem is split up into two steps involving the intermediate time           [  ].  

At the initial step, the vector function  (         ) is evaluated from the 

known vector function         with the system of N differential equations  
 [        ̂   ̂    ̂ ]  ̅ (         )  [        ̂   ̂    ̂ ]  ̅      ,          (2.12) 

where   ̅         ̂        .                                                 (2.13) 
 

The system of equations (2.12) is uncoupled since  
   ̂   ̂ ̂   [                                    ]          , 

ν={l,m}.                                                          (2.14) 
 

It is solved with boundary conditions  
  ̅ (         )    ̅ (          ) =0,                   .            (2.15) 

 

Then the wave function at time         is obtained as 

  ̅ (         )    ̂   ̅ (         ).                                          (2.16) 

 
The most time consuming part in performing the initial step           (Eqs. 
(2.13) - (2.16)), i.e. solving the boundary-value problem (2.12) and (2.15), demands 
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only N computational operations. Moreover, the  ̂ transformation is time independent 

and r independent and, as a consequence, the matrix               has to be 
evaluated only once.  

At the second step, the system of N uncoupled algebraic equations  
 [         ̂       ]            [         ̂       ] (         ) .     (2.17)  

 

with the matrix  ̂       defined in Eq.(2.10) which is nondiagonal only in the spin 
space, is then solved. Applying the split-operator method (2.13) – (2.17) to problem 
(2.8) demands that the two-dimensional basis      , used in Eq.(2.4), is orthogonal 
on the grid    [12]. 

 

2.3 The numerical method for solving the stationary 

Schrodinger equation for bound states of 
11

Be  
This section is devoted to discussion of the eigenstates of the two-body 

Hamiltonian of 11Be (described in section 2.1 by formula (2.2)). In other words, we 
detail the wave functions      solution of   
             .                               (2.18) 

 
This eigenvalue problem leads to two kinds of solution: the negative-energy states 
(with E < 0) and the positive-energy states (with E > 0). The former correspond to the 
bound states of the system with binding energy E. They describe either the physical 
bound states of the system or the Pauli forbidden states. The positive-energy states 
describe the unbound system. They correspond to the scattering of the fragment and 
the core with a relative kinetic energy E. It is known that the two-body Hamiltonian 
H0(r) (Eq.(2.2)) is invariant under rotation. This means that its eigenstates can be 
expanded into partial waves. Their wave functions can be expressed as the product of 
radial part and a spin-angular part:   
                    〈     〉                           (2.19) 

 
where l, j and m are quantum numbers associated to the orbital momentum and the 
total angular momentum (see below), and         is the solid angle defining the 
direction of r. The spin-angular part of the wave function appearing in this expression 
corresponds to the eigenvector |ljm> of operators L2, J2 and Jz

2 (with J=L +I denoting 
the total angular momentum) 
       ⟩              ⟩                     (2.20) 

       ⟩              ⟩                          (2.21) 
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and  
Jz    ⟩         ⟩.                                          (2.22) 

 
It is also an eigenstate of the operator I2 related to the projectile spin:   
       ⟩              ⟩.                       (2.23) 
 

Since I is assumed to be fixed, this quantum number is understood in our 
notations. This part of the wave function can be expressed as a linear combination of 

spin eigenvectors     ⟩  and orbital-momentum eigenfunctions      [48, Appendix A-
VI]:  
 〈     〉  ∑                                   (2.24) 

 
where <         > are the Clebsch-Gordan coefficients. 

From the above, we see that the radial part     of the wave function (2.3.2) is 

the solution of the following eigenvalue equation  
                  {                      [                            ]}                  .               (2.25) 

 
Since the bound spectrum is discreet, the solutions of (2.25) can be distinguished by 
an integer. We choose this integer equal to the number n of nodes exhibited by the 
radial wave function. Subsequently, these states and their energies will be referred to 
by       and       respectively. According to (2.20), their wave functions read  

                    〈     〉                           (2.26) 

 
These states are normalised to unity:  
 

||          |   ∫ [       ]           (2.27) 

 
In the following, the physical ground state will be denoted by      ,  and its energy 

by En. The solutions corresponding to the continuum are distinguished by the wave 

number   √      . In the following, these scattering states will be refeired to by      . Their wave functions read   

                    〈     〉.                          (2.28) 

 
More details of calculating and normalization of the wave functions of the continuum 
is discussed below at section 2.5. 
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With the details given in the preceding sections, the time-dependent 
Schrodinger equation is solved with the initial condition that at time        the 
system is in its physical ground state,  

                         .                                (2.29) 

 
Since m0 is not known, the eigenvalue problem (2.3.1) has to be solved for all the 
values it can take. In general, in the initial state, there should be summation for all m0 
according to the statistical distribution of the neutron relative to the core with static 
populations (averaging over m0). 

Further, using numerical methods, including the reverse iteration method and 
the sweep method, this problem was solved and describe the computational scheme in 
next subsections.  

 
2.3.1 Reverse iteration method in subspace 

The radial part of the eigenvalue problem (2.18) was solved by the reverse 
iteration method. The solution scheme looks like this: 

 

{  ̂  ⃗    ⃗   ̂   ̂       ⃗       ⃗             ̂     ̂     
   ,               ,                    (2.31) 

  

where    – is the initial approximation of the energy level,  ̂    – is the initial vector, 

and the computed vector  ̂    is normalized at each iteration  ̂     ̂      , to 
satisfy the normalization condition (2.27). If we describe this method in more detail 
for our case, then equation (2.31) for first iteration i=1 will be written as: 
   ̂   ̂       ⃗       ⃗     .                                   (2.31’) 
 
The solution of the equation:  √   ⃗        ̂   ̂         ⃗                              (2.32) 

 
where С- normalization coefficient of the radial wave function: 
 ∫  ̅            ,            (2.32’) 

 

i.e. normalized wave function          √   ⃗     for the first iteration. For iterations i: 
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  ̂    ̂        ̅      ̅     ,                                (2.33) 
 

C= ∫  ̅         ,         √   ̅   .                          (2.34) 

 
Then the next iteration: 
   ̂   ̂         ̅                                             (2.35) 

 

Let us denote as  

D=∫    ̅                                                       (2.36) 
 
So the energy comes from: 
 

                .                                             (2.37) 

 

Thus, the backward iteration method makes it easy to find an unknown 
eigenvector, and corresponding eigen energy. The advantage of this method is that 
the final answer will not depend on the choice of initial approximation, since the 
answer quickly converges. But this must be checked by the residual [49]. From 
equation (2.33) we can find that the calculation accuracy is equal to 

    |           |      ,                           (2.38) 

 

the iteration stopped when it reached a discrepancy         : 
   ̂   ̂             .                            (2.39)  

 
When the required discrepancy     is reached, the computed iterations are 

stopped. That is, the accuracy is controlled. The computation practice shows that the 
scheme gives a convergent result and does not depend on the choice of the initial 
approximation E(0) [50]. 

This subchapter provides a scheme for calculating energy using the reverse 
iteration method. If we set the explicit form of the matrix  ̂ for Schrodinger equation  

 [                           ]              ,                         (2.40) 
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we see that the matrix  ̂ will be in the form of a three-diagonal matrix. Thus, to solve 
the system and find the inverse matrix   ̂   one could use the sweep method or LU 
decomposition [51] .  

 
  



29 

 

2.3.2 The sweep method 

We seek the solution of SE (2.40) in the form (2.32) with the initial conditions: 
 {                                  }                                      (2.41) 

 

The equation contains a second-order differential, which we can simplify for 
the computational scheme using the finite-difference method by the formula 

                                .                                                 = 
                        .                                    (2.42) 

 

Here we have introduced a radial grid along rj, where h is the step along the 
grid rj; for convenience, we introduced the designation R(rj)=Rj. SE  goes to the next 
form 
  ̂   ⃗         ̂  ⃗       ̂   ⃗       

= ⃗     .                                          (2.43) 

 
It can be seen that (2.43) consists of a tridiagonal matrix. We will look for a solution 
in the form: 
  ̅     ̅      ,  ̅         ̅      .                                      (2.44) 

 

For the radial wave function 
  ̅         ̅       .                                         (2.45) 

 
Substituting (2.45) into equation (3.20) we find that 
  ̅      ̅       , 
where the coefficients:      ( ̂       ̂ )     ̂ ,    = ( ̂       ̂ )    ⃗            ̂   .                  (2.46) 
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Using this scheme, at first the coefficients             is found (forward 

sweep), then the radial wave function  ⃗      by backward sweep. Next, the 

normalization will be checked. Thus, as a result the radial part of the wave function 
and the 11Be energy level of bound states are found. Negative energy states are 
normalized and describe either physical bound states of the projectile or states 
forbidden by the Pauli principle [12]. 

The solution of the eigenvalue problem (2.18) - the radial part           of the 

bound states (1/2+ and 1/2-) of 11Be wave function                         ̂   
(E<0) and the radial wave function          of the scattering states (3/2-, 3/2+, 5/2+ 

resonances) in the continuum spectrum (E  ) are presented in section 2.5. 
 
2.4. Quasi uniform radial grid 

As already explained, at initial time, the projectile is assumed to be in its 
ground state. The corresponding wave function is significant at small distance and 
decreases exponentially at large distance. The radial grid must then contain enough 
points near the origin to allow a good description of this initial state.  
 Through the interaction with the target, the projectile wave function develops a 
long-range tail which evolves rather quickly towards large distance. It corresponds 
mainly to the breakup component. Because this tail is a slowly varying function of r, 
its description requires less points than that of the bound states.  

In order to take both aspects into account, V.S. Melezhik [12, 52] proposed to 
make use of a quasiuniform radial mesh with small steps near the origin and larger 
ones at large distances. In order to obtain such a mesh, we introduce a variable    [   ] such that  

                    ,                                   (2.47) 
 

where   is the upper bound of the radial interval we consider, and g is a    [   ]  
monotonous function such that g(0)=0.  
 The quasiuniform grid is obtained by mapping a uniform mesh over x with 
constant step        (                                             ) onto the 
radial interval [     ]  . Its points    are calculated from the equally-spaced points of 

the uniform mesh                                                        

through Eq. (2.47): 
          .                                                    (2.48) 

 
The functions vanish at r=0 and r →∞, since they are square integrable. In our 

grid calculation using a finite radial interval, this is approximated by assuming the 
functions to vanish at the last point of the mesh. This reads  

             .                                      (2.49) 
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On this mesh, the radial integrals are therefore approximated by  
 ∫        

          ∫        (    )     
            ∑   (  )             .                   (2.50) 

 
This relation is used to calculate the scalar product of two radial functions [12].  
 

2.4.1 Radial discretization of the wave function 

As usual in grid calculations, the potential terms of   ̂  and  ̂  are represented 
by diagonal matrices composed of their values at mesh points. Therefore we see that 
the matrix  ̂ of the time-dependent potential is fully diagonal in both its angular and 
radial representations.  

Using quasiuniform grid as described above, the second-order differential 
operator appearing in   ̂  reads as 

       [             ]  [                      ] ,                                   (2.51) 

 

where           are respectively the first and second derivatives of  . The 
differentiation operators over   can be discretized with the         - point finite-
difference formulae. The first-order derivative reads  
 (    )         ∑                      ,                              (2.52) 

 
with         and, for      
                                       .                            (2.53) 

 

We have then               . The second derivative is given by  
 (      )         ∑        (     )  

                                                   

 

with, for                       Here we have             . When k=0, 
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         ∑            .                          (2.55) 

 
The second-order derivative over radial components of the wave function expressed 
in the spherical-harmonic basis can then be approximated by  
 (   ̅      )     ∑            ̅                 ,                    (2.56) 

 
where      is the matrix whose elements are  
           { [              (  )]   [                (  )  (  )            ]                                                                                                                                                      

 
Because of the time evolution process, the wave function, which is initially a 

bound state of the halo nucleus, develops a long-range breakup component. This tail 
evolves rather quickly towards large r. Therefore, the last point of the mesh      has 

to be chosen so as to ensure that the wave function does not reach the boundary of the 
mesh. In most of the cases,    , could be chosen equal to 800 fm.  

 As for the number of angular functions, the number of radial-mesh points Nr is 
chosen in order to keep enough accuracy on the values of the cross section. We have 

found empirically that choosing  
           ensures that the evolution calculation has 

converged with regard to the radial discretisation. This ratio corresponds 
approximately to the mean radial step. The fact that this value is related to the 
convergence of the scheme is not surpiring. It indeed characterizes the point density 
and so the accuracy of the discretisation. Therefore, with a mesh extending up to              we consider        points for practical calculations.  

 
2.4.2 The results of solving stationary SE: the energy spectrum of bound 

states 
Using these numerical methods described above, the energy levels of the 11Be 

nucleus were calculated. The results of calculation of the discrete spectrum of the 
11Be are shown in Table 1 and are compared with the experimental [17] and 
theoretical data of [12]. 

The parameterization of the potential between the neutron and 10Be core is 
discussed in detail at next section. Here the eigenvalue problem (2.18) (the system of 
used units and some details of the solution of SE see in appendix A) was solved with 
two different set of parameters in order to compare results.  
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Table 1   The energies of computed bound states of 11Be [50] in comparison 
with the experimental [17] and theoretical data of [12]. 

 

Jπ l Eexp (MeV) 
[17] 

Eth (MeV) 
[12] 

Eth (MeV)     
 

0 -0.503 -0.502 -0.5013 

   
 

1 -0.183 -0.184 -0.1844 

 

The first set is from earlier work [12, 45], where the standard value is    =32.8 MeV 
fm2 for the depth of the ls potential for a p-shell nucleus, the depth of the Woods-
Saxon potential is V0= - 59.5 MeV (l=0) and V1= - 40.5 MeV (l=1), radius R0=2.669 
fm, diffuseness a=0.6 fm (set 1 in table 2). The theoretical values of the energy from 
[12] were taken with these parameters. The second set of parameters is    = 32.8 
MeV fm2, V0= - 62.52 MeV (l=0) and V1= - 39.74 MeV (l=1), R0=2.585 fm, a=0.6 fm 
[are taken from 11] (set 2 in table 2). The last column (Eth) of table 1 was reproduced 
with this set.  

For approximating of Eq.(2.40) with respect to the radial variable r, a second 
order finite-difference approximation on a quasiuniform grid has been used on the 
interval     [    ] with           in this section as in [12]. The grid has been 
realized by the mapping r→x of the initial interval onto     [   ] by the formula                    [12].  

Table 2 illustrates the convergence of the computational scheme as Δr→0 
(Δx→0) using as a test the calculation of the binding energy of the 11Be ground state 
(l=0). For comparison, the computations are performed for two different set of 
potentails in a similar quasiuniform radial mesh [49]. 

 
Table 2   Convergence of the computational scheme on a uniform and 

quasiuniform radial grid 

uniform radial grid quasi uniform radial grid 

Nr    E0 [12] Nx    E0 (1-set) E0 (2-set) 

2000 0.4 -0.722 125 0.008 -0.50177 -0.50497 

4000 0.2 -0.552 250 0.004 -0.50140 -0.50459 

8000 0.1 -0.514 500 0.002 -0.5013 -0.50450 

16000 0.05 -0.504 1000 0.001 -0.50129 -0.50448 
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Results also were compared with the calculations of [12] on the uniform grid. 
The analysis shows that the second order finite-difference approximation on a 
quasiuniform grid with Nx= 500 points (        ), leads to a considerably more 
accurate value of energy E0 than the scheme on the uniform grid with Nr=2000 points 
(         ). As seen in table 2, for computing the eigenvalue E on the uniform 
grid with a 1% accuracy, the number of grid points must be increased 8 times (Nr= 
16000,            ), which proves the efficiency of using a quasiuniform grid as 
proposed in [12]. 
 

2.5 The parameterization of the interaction between the neutron and core 

The time evolution of        following from Eq. (2.1) is calculated according 
to the above scheme starting from the initial state                , where        
is the ground state of the 11Be. The eigenfunctions of Hamiltonian H0 with energy E 
are denoted as          , 

                       ,                               (2.58) 

 
here j is a projectile total momentum j=l+s, resulting from the coupling of the orbital 
momentum l and spin s of the neutron, m is a magnetic quantum number. 

Following the parameterization suggested in [17], the interaction V(r) between 
the neutron and the 10Be core is chosen for bound and resonance states as the sum of 
a spherical Woods-Saxon potential              , where                        and of a standard spin-orbit interaction 

                        s).                           (2.59) 

 
The standard value    =21 MeV fm2 is used for the depth of the ls potential for a p-
shell nucleus [53]. The parameters of the Woods-Saxon potentials, as radius R0, 
diffuseness a and depth    are given in Table 3 and the selection of these parameters 
will be discussed further in detail for bound and resonant states separately [54].  
 

Table 3    Parameters of potentials 
 

Vl even (MeV) Vl odd (MeV) VLS 
(MeV fm2) 

a (fm) R0 (fm) States 

62.52 39.74 21.0 0.6 2.585 1/2+, 1/2-, 5/2+, 
3/2+   6.8* 21.0 0.35 2.5 3/2- 

* we found this parameters at [3]. 
 



35 

 

The depths of the Woods-Saxon potentials have been determined as   = 62.52 
MeV (l-even) and   = 39.74 MeV (l-odd) [11] in order to reproduce the 1/2+ ground 
state of 11Be at -0.503 MeV, the 1/2- excited state at -0.183 MeV and two resonance 
states 5/2+ and 3/2+ with the position of peaks at                  and                 [27, 28] (see table 4). As it is shown in Table 3 for all these states, except 
the resonance 3/2-, the radius is R0=2.585 fm and the diffuseness is a=0.6 fm. 
 Thus, in solving of the radial Schrodinger equation (2.58) for a neutron-core 
system four set of potentials were used. In the discrete spectrum the parameter   =62.52 MeV of the Woods-Saxon potential reproduces ground state at E= -0.503 
MeV (l=0, 1/2+) and the depth   =39.74 MeV describes the first excited state (l=1, 
1/2-). In the continuous spectrum (E>0) for l=2 with the set of parameter   =62.52 
MeV from [11], we got the positions of two resonances 3/2+ (l-1/2) and 5/2+ (l+1/2) 
as                  and                 (see table 4) [27, 28] . To fix the 

position of the 3/2- resonance (l=1) close to the experimental [28] and theoretical [27] 
value                 (table 4), we tuned the set of parameters Vl, a and R0 

ourselves (see Table 3) [3], since the parameters of [11] do not reproduce the known 
position of resonance 3/2-. For l≥3, the spherical potential V(r) was set to zero [54]. 

Thereby our calculations reproduce the theoretical value of positions of 
resonances 5/2+, 3/2- and 3/2+ from [27]. In this simplified single-channel approach, 
resonances are confined only by the centrifugal barrier and the coupling with the 
excited states of the core 10Be is not taken into account. Nevertheless, the calculated 
resonance width Г= 150 keV for resonance 5/2+ is in qualitative agreement with the 
experimental and theoretical ones (see Table 4). The widths of the resonances 3/2- 
and 3/2+ in this simplified model of 700 keV and 600 keV significantly exceed the 
experimental and theoretical ones (see Table 4). However, it is not surprising, since a 
quantitative description of the widths of these resonances requires the inclusion in the 
model of coupling with the core excitation channels.    
 

Table 4 – Theoretical and experimental energy of resonance states of 11Be 
 
 5/2+ 3/2- 3/2+ 

E, MeV Г, keV E, MeV Г, keV E, MeV Г, keV 
Theory 
[24] 

1.230 100 2.789 240 3.367 3 

Exp [25] 1.281 120 2.898 122 2.387 <8 
 

In figure 5 we present the radial part           of the ground state (1/2+) of 
11Be wave function                         ̂  , which is the solution of the 

eigenvalue problem Eq.(2.58) with l=0 at discrete spectrum normalized to unity 
(∫                ). Here the internal Hamiltonian          (2.58) includes 

potentials, the summation of which translates the so-called effective potential of the 
relative neutron-core motion, with the parameterization for l=0 discussed above [54]. 
The effective potential (see Fig.6)  
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                                                                      (2.60) 

 
consists of a Woods-Saxon potential      , a spin orbital term of interaction          
and centrifugal barrier .  
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Figure 5    The radial part          of the wave function of the ground state (1/2+) 

of 11Be (l=0, m=0). 
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Figure 6    The effective potential of the ground state (1/2+) of 11Be (for l=0, m=0). 
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As it is shown in figure 7, the position of the 3/2- resonance (red line) overtop 
the shape of the potential, calculated with the set of parameters from [11], which 
shows the feasibility of selecting the potential by ourselves at [3] for this level.  
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Figure 7    The effective potential, describing first excited 1/2- state (l-1/2) at  
E=  0.184 MeV and resonance 3/2- (l+1/2) with the position E=2.788 MeV (l=1). 

 
Performing integration of the eigenvalue scattering problem (Equation (2.58)) 

when E>0) for l=2 with the parameters   = 62.52 MeV, R0= 2.585 fm and a= 0.6 fm, 
we reproduce the position of peaks at                  and                 

(table 4) [27, 28], which is shown in figure 8. 
 

2 4 6 8 10 12

-20

-10

0

10

E
r
= 3.367 MeV

E
r
= 1.232 MeV

V
e
ff
(r

),
 M

e
V

r, fm

 L=2, 3/2
+
;

 L=2, 5/2
+
; 

 
Figure 8    The effective potential, calculated for l=2 to reproduce the resonance 3/2+ 

(l-1/2) with the position of the energy E=3.367 MeV (blue dashed dots) and  
5/2+ (l+1/2) state with the peak at E=1.232 MeV (red line). 
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The radial p-wave function           of excited (1/2-) bound state  (see fig. 9) 

and scattering p3/2 wave function (see fig. 10)          in the continuum are the 

solutions of the boundary value (2.58) on the same radial grid.  The radial wave 
functions of a d3/2 and d5/2 scattering states are plotted at figures 11 and 12, 
respectively.  
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Figure 9    The radial part of p1/2 wave function           of excited (1/2-) bound 

state  of discrete spectrum (l=1, m=0).  
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Figure 10    The radial part of scattering p3/2 wave function          in the 

continuum (l=1, m=0).  
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The scattering states are computed at energies corresponding to the positions of 
the three resonances 3/2- , 3/2+ and 5/2+. The radial part of the eigenfunction of the 
Hamiltonian H0(r) (2.58)          in the continuum spectrum (E  ) is normalized                    in accordance with the boundary condition                              .  
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Figure 11    The scattering  d3/2 wave functions          of 3/2+ resonance 

(l=2, m=0) of 11Be nucleus. 
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Figure 12    The scattering  d5/2 wave functions          of 5/2+ resonance (l=2, 

m=0) of 11Be nucleus. 
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Thus in subsection 2.3 the results of calculating the spectrum and resonant 
states of the 11Be are described in depth, which is an important element of the 
computational scheme. Here we paid attention to discuss the parameterization of 
potential between the neutron and 10Be core and how the resonant states were 
included in the analysis of the breakup reaction. Also, the internal effective potential 
for different partial and spin states of the 11Be nucleus are illustrated.  

Overall, in chapter 2 the modeling of the physical problem and computational 
methods used for solving the stationary and non-stationary Schrodinger equations are 
described. Also the numerical results of calculation of the bound states (which is a 
necessary initial value for integration of time-dependent Schrodinger equation (2.1)) 
and continuum resonant states of H0(r), that are important for breakup analysis of 
halo nuclei are presented. 
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3 THE CALCULATION OF BREAKUP CROSS-SECTION 

 
The breakup component of wave function            is obtained by 

eliminating the bound states from the calculated wave packet [12,13,53] 
          ⟩  (  ∑       ⟩⟨             )        ⟩                                      

 
where the sum runs over two bound states 1/2+ and 1/2- of 11Be calculated by 
integration of Eq. (2.58). The wave functions of the 11Be bound states are normalized 
to the unity. 

Then the total breakup cross section can be calculated as a function of the 
relative energy E between the emitted neutron and the core nucleus by the formula as 
in [12] 

                ∫ ∑ ∑  ∫            ̂                                  .     

(3.2) 
 

Here         is a spherical Bessel function representing the l-wave component of 

the neutron wave function in the continuum spectrum E>0 (  √     ) if the 
interaction  between the core and the neutron is neglected.  

Time evolution starts at initial time Tin and stops at final time Tout by iteration 
over NT time steps Δt as explained in [13] The initial (final) time Tin (Tout) has to be 
sufficiently big              , fixed from the demand for the time-dependent 
potential         to be negligible at the beginning (end) of the time evolution at t=Tin 

(Tout). Following the investigation performed in Ref. [12, 13], the time interval is 
fixed as  Tin= -20 /MeV and Tout= 20 /MeV, the time step Δt equals to 0.01  /MeV. 

For discretizing with respect to the radial variable r, a sixth-order (seven point) 
finite-difference approximation on a quasiuniform grid has been used on the interval   [    ] with   = 1200 fm. The grid has been realized by the mapping     of 
the initial interval onto   [   ] by the formula                    [24].  

The boundary of integration over the impact parameter b in formula (3.2) was 
chosen from the demand of accuracy (to be of the order of 1%) as bmin= 12fm and 
bmax= 400fm. It should be noted that the inclusion of the region [0, bmin] makes sense 
if the nuclear interaction between the target and the projectile is taken into account 
[3]. The demanded accuracy and the convergence of the integral (3.2) is discussed 
below. 

The breakup component of wave function              (3.1) was also used 
for exploring mean value of the transverse and longitudinal momenta between the 
emitted neutron (n) and the 10Ве core-nucleus in the breakup reaction 11Be+208Pb -> 
10Be+n+208Pb at [13]. The details of this analysis is given in Appendix C.  
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3.1 Convergence of the computational scheme and accuracy of the 

approach 

It is important to emphasize that all errors of the method are controlled and, in 
this section, the accuracy of the numerical technique is discussed.  

In works [12, 13] and in subsection 2.2.2, it was shown the unitarity of the 
evolution operator of the computational approach for integration of the time-
dependent Schrodinger equation (2.1). It ensures that the normalization of the neutron 
wave-packet to unity is preserved with the required accuracy at chosen Tout= 
20 /MeV. In these works a discussion is also given about the choice of Tout from the 
condition of convergence of breakup cross sections along this parameter. In [13] it is 
demonstrated that if rm is chosen ≥ 800 fm, then at Tout= 20ℏ/MeV the component of 
the wave-packet describing the outgoing neutron does not reach the boundary of 
integration over r. The wave functions of the 11Be bound states are normalized to 
unity [3]. 

The quasiuniform radial grid with 2000 mesh points (generated by the step △x 
=5 10−3) and the edge at rm = 1200 fm gives the accuracy of integration of the order of 
about 1%. The step of integration over the time variable △t = 0.01 ℏ/MeV chosen in 
[12] keeps the same order of accuracy.  

In the calculation of the breakup cross section the choice of edges of 
integration bmin and bmax must be carefully tested. It was investigated in previous 
calculations at [12, 13] that the integration over the interval [30 fm, 400 fm] gives 
about 60% of the calculated cross section near the maximum. A similar calculation in 
work [6] was made up to bmax = 30 fm. The piece from b>30fm to ∞ was taken into 
account according to the perturbation theory, which seems not very reasonable, as 
can be seen in this figure 13. Here the breakup cross-section from previous 
calculations [12] were made without taking into account resonance states. The dotted 
line represents the results obtained on a quasi-uniform grid ∆ = 0.002 fm, rm= 800 
fm. The solid line shows the results calculated on the grid ∆ = 0.0005 fm, rm= 1200 
fm. The triangle in graph indicates the results calculated with the Coulomb potential 
(2.3), and the full circle is the calculated one in the free neutron model, which takes 
into account the deviation of the projectile from a linear trajectory and the effect of 
post-acceleration. As shown in this work [12], the influence of these effects is 
negligible. The results obtained partially perturbatively [14] are presented as a dotted 
line, which was calculated numerically over the interval [bmin= 12 fm, bmax= 30 fm], 
and the remaining part was estimated using perturbation theory. Experimental data 
are taken from [16]. This shows the advantage of our approach, which allows 
integration up to such large values of bmax outside of perturbation theory. 

Tables 5 and 6 illustrate the convergence of the integral (3.2) as a function of 
the upper bound bmax for a few relative energies E. The total breakup cross section 
calculated for an intermediate beam energy of 72 MeV/nucleon (table 5) and for a 
lower beam energy 10 MeV/nucleon (table 6) taking into account the low-lying 
resonance states  (3/2+,3/2- and 5/2+) of 11Be nucleus (more detail at subsection 3.2.2). 
As it can be seen, the demanded accuracy (to be in order of one percent) in 
computing the integral (3.2) is achieved as bmin= 12 fm and bmax= 400 fm [3]. Here 
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the nuclear interaction effects were simulated by a cutoff bmin= 12 fm of the impact 
parameters at the formula (3.2). 

 

 
Figure 13     The cross sections dσ(E,bmax)/dE of previous calculations without 
including resonance states from [12] in comparison with the partly perturbative 

results of [45]. The experimental data are from [16]. The figure is taken from [12]. 
 
Table 5   Convergence of the breakup cross section                 in 

(b/MeV) at 72 MeV/nucleon over the edge of integration              for different 
relative energies    (MeV). The calculations are performed for N=25 with including 
all three resonant states [3]. 

 

bmax E=0.1 
MeV 

E=0.4 
MeV 

E=0.8 
MeV 

E=1.2 
MeV 

E=1.6 
MeV 

E=2.0 
MeV 

E=2.8 
MeV 

E=3.0 
MeV 

E=3.3 
MeV 

12 0.021 0.052 0.046 0.032 0.019 0.013 0.006 0.005 0.004 

20 0.183    0.397 0.309    0.200   0.122    0.080    0.037   0.030    0.023    

50 0.561    1.024    0.689   0.407  0.234    0.143    0.060    0.048    0.035    

100 0.816    1.335    0.819   0.456   0.254    0.151    0.061 0.049 0.036 

200 0.950    1.436 0.841 0.461 0.255 0.151 0.061 0.049 0.036 

300 0.972 1.443 0.841 0.461 0.255 0.151 0.061 0.049 0.036 

400 0.976 1.444 0.841 0.461 0.255 0.151 0.061 0.049 0.036 
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Table 6   Convergence of the breakup cross section                 in 
(b/MeV) at 10 MeV/nucleon over the edge of integration              for different 
relative energies    (MeV). The calculations are performed for N=81 with including 
all three resonant states [3]. 

. 
bmax E=0.1

MeV 
E=0.4 
MeV 

E=0.8 
MeV 

E=1.2 
MeV 

E=1.6 
MeV 

E=2.0 
MeV 

E=2.7 
MeV 

E=3 
MeV 

E=3.3 
MeV 

13 0.031 0.055 0.078 0.102 0.058 0.045 0.025 0.019 0.014 

20 0.350    0.696 0.842    0.767   0.413   0.273   0.121   0.085   0.060    

50 1.363    2.439    1.889   1.254   0.615   0.363   0.145   0.099   0.068    

100 1.839    2.809    1.966   1.269   0.618   0.364   0.145 0.099 0.068 

200 1.904    2.822 1.967 1.269 0.618   0.364 0.145 0.099 0.068 

400 1.907 2.826 1.968 1.269 0.618   0.364 0.145 0.099 0.068 

 
Overall, the splitting-up method gives a fast convergence with respect to the 

numbers of grid points N (angular) and Nx (quasiuniform radial). The computational 
time is directly proportional to the numbers N and Nx [12]. The convergence of the 
method with respect to angular points     is discussed below, it is investigated 
for the case of intermediate and lower beam energies individually [3]. 

In order to investigate the convergence of the numerical scheme by the angular 
grid, we calculated the cross section dσ(E, bmax)/dE for a beam energy 69 
MeV/nucleon at different angular grid points N = 9, 25, 49 (the number of basis 
functions (2.5) in expansion (2.4)) with including all three resonance states 5/2+, 3/2-, 
3/2+. As it is illustrated in fig.14, the approach achieves the convergence at N = 25. 

One of the main task of our investigation is to extend the time-dependent 
approach for calculation of the breakup cross sections at low energy beams. Firstly, 
we investigate the convergence of computational scheme at low energies over the 
angular grid number N. For this the calculation of breakup cross section                for a beam energies of 20 MeV/nucleon (figure 15) and 5 
MeV/nucleon (figure 16) is performed on different angular meshes N=9, 25, 49, 81 
and 121. 
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Figure 14    The convergence of the breakup cross section            over the number 

N of angular grid points calculated by Eq. (3.2) including three resonances (5/2+, 3/2-, 
3/2+) at 69 MeV/nucleon. 

 
As it is shown in figure 16, for computing the breakup cross section at beam 

energies ≥ 20 MeV/nucleon with demanded accuracy of the order of one percent, it is 
sufficient to use N=49. For lower energies (up to 5 MeV/nucleon) the basis should be 
extended to N=81 (see fig.16) due to the slowing down of convergence [3]. 
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Figure 15     The convergence over the angular grid number N of the calculated 
breakup cross sections with including  resonant states 5/2+, 3/2− and 3/2+ into the 

computational scheme at 20 MeV/nucleon. 
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Figure 16     The convergence over the angular grid number N of the calculated 
breakup cross sections at 5 MeV/nucleon. The cross sections were calculated by 

formula (3.2). The resonant states 5/2+, 3/2− and 3/2+ were included into the 
computation. 

 
The results of the computed breakup cross section                for 20 

MeV/nucleon on different angular meshes N=9, 25, 49, 81 and 121 are presented at 
tables 6 and 7 below.  The calculations were performed for different relative energies    (MeV) taking into account only two bound states ½+ and ½- (table 7) and adding 
three low-lying resonances 3/2-, 3/2+ and 5/2+ of 11Be (table 8). 

Thus, the convergence of the computational scheme and accuracy of the 
method are demonstrated in a wide energy range from intermediate (69 
MeV/nucleon) to low beam energies (5 MeV/nucleon) including low-lying 
resonances in various partial and spin states of 11Be. 
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Table 7    Convergence of breakup cross section considering only bound states                on an angular grid 
points N=9, 25,49 and 81 at bmax=400 fm for a beam energy  E=20 MeV/nucleon 

 

E, 
MeV 

              , b/MeV  

0.05 0.1 0.3 0.5 0.8 1.0 1.2 1.6 2.0 2.4 2.7 3.0 3.3 3.5 

N=9 1.356 2.688 4.549 3.323 2.067 1.533 1.113 0.619 0.342 0.188 0.130 0.094 0.071 0.063 

N=25 1.061 1.673 2.589 2.205 1.485 1.151 0.838 0.491 0.269 0.151 0.103 0.073 0.054 0.056 

N=49 1.069 1.652 2.443 2.039 1.362 1.058 0.773 0.458 0.254 0.143 0.099 0.071 0.053 0.054 

N=81 1.058 1.643 2.440 2.038 1.361 1.057 0.772 0.457 0.253 0.143 0.099 0.071 0.053 0.054 

 

 

Table 8    Convergence of breakup cross section taking into account two bound and 3 resonance states                
on an angular grid points N=9, 25,49,81,121 at bmax=400 fm at E=20 MeV/nucleon 

 

E, 
MeV 

              , b/MeV  

0.05 0.1 0.3 0.5 0.8 1.0 1.2 1.6 2.0 2.4 2.7 3.0 3.3 3.5 

N=9 1.413 2.869 5.062 3.896   2.520 1.859 1.384 0.714 0.397 0.229 0.153 0.104 0.072 0.059 

N=25 1.113 1.799 2.910 2.585 1.814 1.396 1.062 0.537 0.310 0.184 0.125 0.086 0.060 0.050 

N=49 1.118 1.777 2.756 2.411 1.676 1.283 0.978 0.510 0.296 0.178 0.121 0.084 0.059 0.049 

N=81 1.107 1.768 2.754 2.410 1.676 1.282 0.976 0.510 0.296 0.178 0.121 0.084 0.059 0.049 

N=121 1.110 1.770 2.751 2.410 1.676 1.282 0.976 0.510 0.296 0.178 0.121 0.084 0.059 0.049 
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3.2 Results and discussion 

In this work, the influence of low-lying resonance states of 11Be into breakup 

reaction at 69 and 72 MeV/nucleon are studied in the framework of time dependent 

approach as in [12,13]. We suppose that in the experimental data from [16,17], there 

are visible peaks near the energies 1.23, 2.78 and 3.3 MeV , which correspond to 

position of low-lying resonance states 5/2+, 3/2- and 3/2+ [27] of 11Be. The 

contribution of resonances into breakup reaction of 11Be at a heavy target 208Pb at 

intermediate beams is studied at subsection 3.2.1 below. 

One of the main tasks of the dissertation is to extend and demonstrate the 

applicability of the computational model for solving the time-dependent Schrodinger 

equation in a nonperturbative algorithm [12,13] for calculations of breakup cross 

section at low collision energies. The subsection 3.2.2  provides the investigation  of 

the resonance states’ contribution to breakup at  low beam energies of 5-30 

MeV/nucleon. 
 

3.2.1 Influence of resonant states on the breakup cross section of 
11

Be 

at 69 and 72 MeV/nucleon 

In the works [12] and [13] the breakup reaction 11Be + 208Pb → 10Be+n+208Pb 
was successfully investigated at 69 and 72 MeV/nucleon with the non-perturbative 
time-dependent approach. As it is illustrated at [12, 13, 23], this method is the 
efficient tool for a quantitative analysis of the Coulomb breakup of halo nuclei.  
However, the resonant states of 11Be were not included in these calculations. In 
particular, we assume that in the experimental data at these beam energies [16, 17], 
there are visible peaks near the energies 1.23, 2.78 and 3.3 MeV, which correspond to 
position of resonances: 5/2+, 3/2- and 3/2+ [27]. Here, we overcome this drawback of 
the model: the resonant states 5/2+, 3/2− and 3/2+ (see Table 4) are taken into 
consideration. Note that these resonances were also observed experimentally by 
Fukuda et.al. in the breakup of 11Be on the light target (12C) at 70 MeV/nucleon [17].  
In Fig. 17, we demonstrate that the inclusion of the resonant states in the interaction 
between the neutron and the 10Be-core gives a considerable contribution to the 
breakup cross sections. Thus, for a relative energy E= 1.2 MeV the 25% increase of 
the cross section is observed, for E= 3.3 MeV the increment is about 3% [3]. Overall, 
it is shown that the inclusion of the resonant states improves the agreement of the 
calculated breakup cross section with experimental data at 72 MeV/nucleon [16]. The 
calculations are performed on the angular grid with N = 25 grid points. Convolution 
of the calculation with the experimental resolution was not performed. 

To clarify the contribution of the dominant resonance to the breakup cross 
section, we performed the computation at 69 MeV/nucleon, where most detailed and 
accurate experimental data are available [17]. The partial contribution of each 
resonance is illustrated in Table 9 [3]. It is shown that the resonances 3/2− and 3/2+ 
make a slightly larger contribution to the cross section dσ(E,bmax)/dE than 5/2+ at 
such intermediate beam energies (~70 MeV/nucleon). 
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Table 9    The contribution for different relative energies E (in MeV) of the 
resonant states 5/2+, 3/2− and 3/2+  to the breakup cross section dσ(E,bmax)/dE (in 

b/MeV) at 69 MeV/nucleon. Here, ’b.s.’ indicates the cross sections calculated with 
the interaction potential between the neutron and the 10Be-core including only two 

bound states of 11Be. 
 

Energy, MeV b.s. b.s.+5/2+ b.s. + 
5/2++3/2+ 

b.s. + 
5/2++3/2- 

b.s. + 3 
res 

E=0.1 0.936 0.936 1.007 1.011 1.011 

E=0.3 1.420 1.421 1.595 1.606 1.606 

E=0.8 0.704 0.708 0.865 0.875 0.875 

E=1.0 0.555 0.562 0.639 0.647 0.648 

E=1.2 0.383 0.378 0.473 0.479 0.479 

E=2.0 0.138 0.137 0.155 0.156 0.156 

E=2.7 0.056 0.056 0.070 0.069 0.069 

E=3.0 0.043 0.044 0.051 0.050 0.050 

E=3.3 0.036 0.036 0.037 0.037 0.037 
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Figure 17   The breakup cross sections dσ(E,bmax)/dE including into interaction 
between the neutron and the 10Be-core only 1/2+ and 1/2− bound states, and bound 
and resonant states (5/2+, 3/2−, 3/2+) in comparison with experimental data at 72 

MeV/nucleon [16].  
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3.2.2 Breakup cross section of 
11

Be at low beam energies 

Despite the fact that research on the halo of the 11Be nucleus dates back to the 
80s of the last century, this topic is still one of the most relevant. Including the tool 
for studying the halo nuclei through the Coulomb breakup of the system is important. 
As already indicated above, experiments were performed at intermediate beam 
energies (69 and 72 A MeV) of 11Be [16, 17] for the reaction 11Be + 208Pb -> 
10Be+n+208Pb and many theoretical calculations and processing [11, 12, 13, 14, 45, 
46] have been carried out. There is also an experiment at high energy beams - at 520 
MeV/nucleon [44]. 

However there were several theoretical studies at low beam energies for 
Coulomb breakup reaction of 11Be. In particular, in [11, 18] it was calculated the 
differential cross section of the breakup of 11Be in the eikonal approximation at a 
beam energy of 20 MeV/nucleon. Also, authors of [19] studied postacceleration 
effects in the Coulomb breakup of neutron halo nuclei at low energies: 5-30 A MeV. 
In this section we extend the the non-perturbative time dependent approach for 
calculations of breakup cross section at low beam energies down to 5 MeV/nucleon 
and investigate the contribution of the 11Be resonance states in this region [3].  

In Fig. 13, we compare our results with the Coulomb wave Born approximation 
(CWBA) available for a beam energy of 30 MeV/nucleon [19]. Our calculations were 
performed with including only bound states (blue dash curve) and also with bound 
and three resonant states (red curve). They are compared with the CWBA 
calculations for the first order CWBA (green short dots) and the finite range CWBA 
(black dashed dots). Figure 18 shows a significant deviation of the CWBA 
calculation from our result at 30 Mev/nucleon, which increases with decreasing 
energy. This is consistent with the conclusion of the authors of [19] about the 
difficulty of using the CWBA for lower energies. The resonant states of 11Be were 
not included in the CWBA calculations.  

In Fig.19 we compare our results with the breakup cross section calculated in 
[11, 18] within the dynamical eikonal approximations at fixed relative energies E= 
0.3 and 0.5 MeV at 20 MeV/nucleon. In the dynamical eikonal calculations the 
resonant states of 11Be were not taken into account. Note that at an energy E= 0.3 
MeV near the peak of the cross section, our calculation without including the 
resonant states of 11Be gives a cross section rather close to the dynamical eikonal 
approach [18]. 
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Figure 18   The breakup cross section calculated by formula (3.2) at  
30 MeV/nucleon in comparison with CWBA calculations of [19]. 
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Figure 19     The breakup cross sections calculated with only bound states of 11Be in 
the computational scheme (blue dash curve) and including three resonances of 11Be 
(red curve) at 20 MeV/nucleon in comparison with calculations of the dynamical 

eikonal approaches at E = 0.3 MeV [18] and E = 0.5 MeV [11]. 
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The table 10 shows the total differential cross section data from [11] and [18] 

for relative energies E=0.5 MeV and E=0.3 MeV at a beam energy of 20 
MeV/nucleon in comparison with our calculations for the angular grids N=9, N=25 
and N=49 for bound states and with taking into account three resonant states. As can 
be seen, our calculations for bound states are close to the cross sections obtained in 
the dynamical eikonal approximation. In this graphs at Fig.13, Fig. 14 and table 10, 
the data from these papers [11] and [18] may have an error of ≈5%, because we could 
make some deviations while digitizing the data from the graphs of these works [11, 
Fig. 4] and [18, Fig. 11] and there are still errors in the numerical integration 
according to Simpson (the accuracy is ε≈10-3, the integration step is h=0.25 fm). 

 
Table 10    The comparison of our data at E=0.5 MeV and E=0.3 MeV  

with the results of [11,18], calculated with eikonal approximation at 20 MeV/nucleon 
                              , b/MeV by dynamical eikonal 

approximation from [11,  
Fig. 4] 

angular grid with only bound 
states (b.s.)  

b.s. + 3 
resonances 

N=25 2.205 2.585 

1.678  N=49 2.0389 2.411 

N=81 2.0384 2.410                                 , b/MeV by dynamical eikonal 
approximation from [18, 

Fig. 11] 

 

angular grid with only bound 
states  

b.s. + 3 
resonances 

N=25 2.5893 2.910 

2.409 N=49 2.4425 2.756 

N=81 2.4398 2.754    

 

In several works [47, 48], it was considered the influence of the resonance state 
(1/2±, 3/2± and 5/2+) to the breakup of 11Be nucleus at intermediate energies using 
different targets. These calculations, based on the no-recoil DWBA and XCDCC (the 
extended version of the continuum-discretized coupled-channels) methods, showed 
indeed that the main contribution to the lower energy angular distribution arises from 
the single-particle excitation mechanism populating the 5/2+ resonance, whereas for 
the higher energy angular distribution the main contribution comes from the 
excitation of the 3/2+ resonance due to the collective excitation of the 10Be core [55, 
56].  
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3.3 The breakup cross section including neutron interaction with the core 

in the final state 
Since one of the main objectives of the work is to study the influence of 

resonant states of 11Be on the reaction of its breakup, it becomes necessary to take 
into account the resonant and nonresonant nuclear interaction of the neutron with the 
core in the continuum spectrum in the final state of the reaction. Therefore, we also 
use the alternative formula for the breakup cross section including neutron interaction 
with the core in the final state of the breakup process [3, 13, 23]: 

                ∫ ∑ ∑  ∫             ̂                                .        (3.3) 

 
Here         is the radial part of the eigenfunction of the Hamiltonian H0(r) (2.3.2) 

in the continuum spectrum (           )), normalized to jl(kr) as kr →∞ if V(r)=0. 

To find the states of the continuous spectrum of problem Eq. (2.20), we used the 
method of reducing the scattering problem to a boundary value problem, described in 
the work [24]. Summation over (l, m) in (3.3) includes all 16 partial waves up to  
lmax= 3 inclusive, as in (3.2) [3].  

Since the wave functions         of the continuum spectrum of the 

Hamiltonian Eq.(2.3.2) are orthogonal to the states of the discrete spectrum of the 
same Hamiltonian, the elimination (3.1) of the bound states from the neutron wave 
packet after collision with the target is not required here. 

In Fig. 20, we demonstrate that including the resonant states between the 
neutron and the 10Be-core into the model improves the agreement of the calculated 
breakup cross sections with most accurate experimental data available at 69 
MeV/nucleon [17]. Here it is showed that the effect of interaction of the neutron with 
the core at the final state of the breakup reaction (3.3) does not make a significant 
contribution to the cross section at intermediate energies around 70 MeV/nucleon.  
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Figure 20    Comparison of the calculated breakup cross sections with experimental 
data [17] at 69 MeV/nucleon. Calculations were performed by formula (3.2) with 
only bound states in the interaction between the neutron and the 10Be-core (blue 
dashed curve) and with bound and three resonant states (5/2+, 3/2−, 3/2+) in the 

interaction (green dots). The case of including both bound and resonant states, as well 
as the interaction of the neutron with the core in the final state of the breakup reaction 

by (3.3) is also presented (red solid curve). Convolution of the calculation with the 
experimental resolution was not performed. 

 
Figure 21 and 22 demonstrate the contribution to the breakup cross sections of 

the resonant states 5/2+, 3/2− and 3/2+ at a beam energy of 10 and 5 MeV/nucleon. 
The breakup cross sections were calculated by formula (3.2), which approximated the 
continuum of the neutron in the final state of the breakup by the Bessel functions 
(dashed and dotted curves). The differences on the peaks between the dashed and 
dotted curves is due to the influence of low-lying resonances (5/2+, 3/2− and 3/2+) [3]. 
Calculations with formula (3.3) taking into account the interaction of the neutron with 
the 10Be-core at the final state of the breakup (red solid curve) are also presented here.  
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Figure 21    The contribution to the breakup cross section of the resonant states and  
the neutron interaction with the core in the continuum at 10 MeV/nucleon. The 

calculations are performed at N = 81. 
 

It is shown that the inclusion of the neutron-core interaction in the final state of 
the breakup reaction considerably corrects the breakup cross sections (see the 
difference between the dotted and solid curves in Fig.21 and Fig.22): taking into 
account the nuclear interaction (resonant and nonresonant) of the neutron released in 
the breakup reaction with the 10Be core leads to a decrease in the breakup cross 
section and a shift of its peak to the region of higher energies. This effect decreases 
with increasing beam energy and practically disappears at 69 MeV/nucleon (see 
Fig.20). 

Overall, the relative energy spectra of the fragments (neutron and core) were 
calculated for the Coulomb breakup of 11Be on the 208Pb target in the range 5 – 70 
MeV/nucleon of beam energies. In Fig. 23  we present the results of the calculations, 
which take into account the influence of the resonant states (5/2+, 3/2−, 3/2+) and the 
effect of the neutron-core interaction in the final state (3.3) to the breakup cross 
section of the 11Be nucleus.  
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Figure 22    The contribution of the resonant states and the neutron-core interaction 

in the final state to the breakup cross section at 5 MeV/nucleon.  
The calculations are performed at N = 81. 
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Figure 23    The breakup cross section dσbu(E)/dE calculated for different beam 
energies by formula (3.3). In the calculation the bound and three resonant states were 

included in the neutron-core interaction. 
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The analysis performed demonstrates a strong dependence of the calculated 
cross sections on the beam energy and an increase in their sensitivity to low-lying 
resonance 5/2+ with decreasing energy [57]. This also confirms the possibility of 
studying low-lying resonances in halo nuclei using their Coulomb breakup reactions 
[3].  

 
3.4 Сontribution to breakup of nuclear interaction between projectile and 

target 

The interaction         of the target with the projectile (Eq.(2.3) in subsection 
2.1) was assumed to be purely Coulombic. As it has been shown in previous studies 
with time-dependent nonperturbative approach [13], for breakup reactions with a 
heavy target (208Pb), the contribution of the nuclear part of the projectile-target 
interaction in the breakup cross sections is negligible around 70 MeV/nucleon. In this 
section we evaluate this effect at low beam energies following the approach of optical 
potential for the nuclear part                               between the target 
and projectile-nuclei interaction  
                                                                                    (3.4) 

 

Here     and     are the core-target                and neutron-target                relative variables and optical potentials             have the form: 
                                                                           (3.5) 

 

with Woods-Saxon form factors f            =                    , where x stands 

for either core or neutron. More details of calculations with optical potential (3.5) are 
given in Appendix B.  

In a simple analysis of this theory, the real term of (3.5) is reviewed as 
responsible for the elastic scattering while the imaginary part of (3.5) simulates the 
non-elastic processes. Because these processes somehow “absorb” the flux of 
probability from the elastic channel, the imaginary term is also known as the 
absorption term.  

The analytical expression of such potentials is obtained by selecting the 
parameters of general form factors so as to fit the calculated scattering cross sections 
onto experimental data. A compilation of optical potentials for different projectiles 
and targets can be found in Ref. [58-61].  We use here the parameters of the optical 
potentials (3.5) from the paper [13], which are given in Table 11.  
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Table 11    Parameters of the core-target and neutron-target optical potentials. 

 
c or n Vx (MeV)  Wx (MeV) RR(fm) RI(fm) aR(fm) aI(fm) 

 
10Be 70.0 58.9 7.43 7.19 1.04 1.0 

n 28.18 14.28 6.93 7.47 0.75 0.58 
 

In the previous sections, the Coulomb interaction is modeled by a point 
Coulomb potential while the nuclear interaction is simulated by a simple impact 
parameter cutoff. This is known as the black-disk approximation. It means that the 
interaction between the target and the projectile core and fragment is assumed to be 
purely Coulombic above a certain impact parameter bmin. Below that limit, the 
interaction is assumed to be dominated by nuclear forces that lead to strong inelastic 
reactions. From this viewpoint, only the trajectories with impact parameters above the 
cutoff are taken into account to compute the breakup cross section.  

In the previous calculations for pure Coulomb approximation Eqs. (3.2 and 
3.3), the nuclear interaction effects were simulated by a cutoff bmin=12 fm of the 
impact parameter. The inclusion of nuclear interaction          between the 
projectile and the target requires the reduction of the impact parameters cutoff to 
bmin=5 fm [57].   

Figure 24 illustrates the calculations of breakup cross section with pure 
Coulomb (3) and additional nuclear part of interaction (3.4) for lower beam energy of 
10 MeV/nucleon taking into account bound and three resonant states [54]. Also the 
results obtained by Coulomb potential (3) with considering only two bound states are 
given for comparison. It is shown that the cutoff Coulomb approximation (3) 
underestimates the breakup cross section including the nuclear interaction between 
the projectile and the target (3.4) and the inclusion of three resonance states into the 
breakup reaction considerably corrects the breakup cross sections,  especially near the 
resonant energy 1.23 MeV of the 5/2+ resonance [3, 54].  
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Figure 24    Breakup cross sections calculated with only bound states (dotted curve) 
in the interaction between the neutron and the 10Be-core and taking into account three 
resonant states (dashed curves) for pure Coulomb potential (3) and with (3.4) adding 

of nuclear interaction (full lines) between the projectile and target for the case of 
including both bound and resonant states (5/2+, 3/2- and 3/2+) at 10 MeV/nucleon. 

 
The breakup cross sections calculated with Coulomb and additional nuclear 

part of interaction are compared in figures 25 and Fig.26 for beam energies of 30 (see 
Fig.25) and 20 (see Fig.26) MeV/nucleon. It is shown that the cutoff Coulomb 
approximation Eq.(2.3) underestimates the breakup cross section including the 
nuclear interaction between the projectile and the target Eq.(3.4) [3].  In the 
calculation, as well as in the previous sections, two bound states (ground ½+ and first 
excited ½- states) and three resonance states (5/2+, 3/2- and 3/2+) of 11Be were taken 
into account. The calculation were performed on the angular grid giving convergent 
results with N=121 grid points. The difference between the linear and realistic 
trajectories is discussed in the next subsection 3.5. 
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Figure 25   Breakup cross sections calculated with semiclassical approach using 

linear trajectories of the projectile with pure Coulombic projectile-target interaction 
(Eq.2.3) and with inclusion of nuclear effects (Eq.3.4) at 30 MeV/nucleon. The solid 
curves indicate the dσbu(E)/dE with quantum-quasiclassical approach including the 

Coulombic and nuclear projectile-target interaction (Eq.3.4). 
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Figure 26   Breakup cross sections calculated with linear trajectories of the projectile 
for pure Coulombic (Eq.2.3) and adding of nuclear interactions between projectile 

and target (Eq.3.4) at 20 MeV/nucleon. An account of the curvature of the projectile 
trajectory and nuclear effects in calculating the dσbu(E)/dE are illustrated by solid 

lines. 
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In conclusion, it can be seen that with a decreasing of beam energy, the 
influence of the nuclear effect in the projectile-target interaction becomes more 
significant for the breakup cross section. The contribution from the resonance states 
remains noticeable when the nuclear interaction between the target and the projectile 
is included, and the peak due to the 5/2+ resonance is still clearly visible at low beam 
energies. Note that a noticeable manifestation of nuclear effects in the differential 
cross section for the breakup of the 11Be on 208Pb at 12.7 MeV/nucleon was also 
pointed out in the recent work [30], where the experimental data were analyzed with 
the CDCC method. 
 

3.5 How good is the linear trajectory approach for projectile motion at low 

energies  

To quantify how good the semiclassical approach with decreasing the projectile 
energy is, we also performed calculations with hybrid quantum-quasiclassical 
approach [25, 26], which includes the effect of deformation of the projectile 
trajectory and the transfer of energy from target to projectile and vice versa during a 
collision. In this approach [25] simultaneously with the time-dependent Schrödinger 
equation (2.1) for the halo-nucleon wave function Ψ(r, t) we integrate the set of 
Hamilton equations 

         
        (      )            

        (      )                           (3.6) 

 
describing relative projectile-target dynamics. Here, the classical Hamiltonian HBP(P, 
R, t) is given by     (      )   

      ⟨      |       |        )|          |      ⟩                      (3.7) 

 
where the last term <Ψ(r, t)|...|Ψ(r, t)> represents the quantum-mechanical average of 
the projectile-target interaction over the halo-nucleon density instantaneous 
distribution |Ψ(r, t)|2 during the collision.  

Thus, the Hamiltonian (3.7) defined in such a way has a parametric dependence 
on the halo-neutron position r(t) at every time moment. The inclusion of the strong 
coupling between the projectile and the target in the computational scheme insures 
that the effect of deformation and “vibration” of the projectile trajectory, as well as 
the transfer of energy from the target to the projectile and vice versa, are taken into 
account at the moment of collision. The required stability and accuracy of the 
integration of Eq. (3.6) with the same step of integration over time as the time-
dependent Schrödinger equation (1) was ensured by using a computational difference 
scheme developed in [26, 62] based on the Störmer–Verlet method. 

The breakup cross sections with the hybrid quantum-quasiclassical approach 

are presented in Figures 20-23 in comparison with the results of the semiclassical 

calculations using linear trajectories for a projectile for beam energies 30 (graph 25 at 
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subsection 3.4), 20 (graph 26 at subsection 3.4), 10 (graph 27 ) and 5 MeV/nucleon 

(graph 28 ). Dashed curves indicate results obtained with pure Coulombic projectile-

target interaction (Eq.2.3) and dots—with the interaction (Eq.3.4) where nuclear 

effects are also included in the frame of semiclassical approach with linear projectile 

trajectories. The solid curves indicate the results of calculations with quantum-

quasiclassical approach (realistic trajectory of the projectile) including the Coulombic 

projectile-target interaction as well as the nuclear interaction in the interaction 

potential (Eq.3.4) 

The study shows that in the energy range 30–20 MeV/nucleon the difference 
between the two approaches does not exceed several percent (graphs 25 and 26 of 
previous subsection) and reaches a significant one starting from 10 MeV/nucleon 
(graph 27). For 10 MeV/nucleon, the discrepancy is about 10% (see Fig.27), and for 
5 MeV/nucleon it reaches a value of more than 20% (as seen at graph 28). If for 
energies up to 10 MeV/nucleon this difference does not exceed the contribution of 
nuclear effects in the breakup cross sections, then for 5 MeV/nucleon this distinction 
already exceeds the effect of the nuclear interaction.  
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Figure 27   Breakup cross sections with pure Coulombic projectile-target interaction 

and including nuclear effects calculated with linear and curvilinear (realistic) 
trajectories of the projectile for a beam energy of 10 MeV/nucleon. 
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Figure 28   Breakup cross sections calculated with semiclassical approach using 

linear trajectories of the projectile and with quantum-quasiclassical approach 
(realistic trajectory) at 5 MeV/nucleon for pure Coulombic and nuclear projectile-

target interactions. 
 
Figure 29 shows the dependence of the coordinates Z(X) (here the positions 

Z=Z0+vt, X=b, which are formulate the relative coordinate between the projectile and 
target R(t) = b + v0t (Y=0)) in curvilinear coordinate at a fixed impact parameter (b= 
311 fm) at different beam energies: 20, 30 and 69 MeV/nucleon. As can be seen from 
graphs, when the curvature of the projectile trajectory is taken into account, 
oscillations of the trajectory, i.e. deformation effect is visible.  
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Figure 29    Dependence of Z(X) in curvilinear coordinate at a fixed impact 
parameter b = 311 fm at different beam energies 20, 30 and 69 MeV/nucleon. 

 
At figure 30 the dependence of the coordinates Z(X) of the projectile trajectory 

calculated by quantum-quasiclassical approach is illustrated for different impact 
parameters at the fixed collision energy of 20 MeV/nucleon.  

Thus, the study performed demonstrates that the semiclassical approach with 
linear trajectories of the projectile provides a satisfactory accuracy in calculating the 
breakup cross sections of 11Be up to 20 - 30 MeV/nucleon. It is shown that this 
approach is also useful at lower energies, where, however, a more adequate 
description is provided by the quantum-semiclassical approach [3]. 
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Figure 30    Dependence of Z(X) in curvilinear coordinate at 20 MeV/nucleon for 

different impact parameters b. 
 

 
3.6 Excitation of 

11
Be in collision with 

208
Pb 

We have also calculated the transition probability Plj during the collision of 
11Be with 208Pb to the excited state ½- with the energy El=1,j=1/2= - 0.183 MeV 

            ∑ |     (     )|           |  ,                          (3.8) 

 
and the corresponding inelastic cross section  
             ∫                .                                          (3.9) 

 
First, in order to evaluate the contribution of the E1 transition in the excitation 

cross sections (3.9), we perform calculations using only the electric dipole term in the 
time-dependent potential (2.3). In other words, the time-dependent Coulomb potential 
is replaced by the first term of its multipole expansion: 
                          

              .                                     (3.10) 
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The transition probabilities (3.8) and cross sections (3.9) were also calculated 
for pure Coulomb projectile-target interaction (3) and with including nuclear effects 
between the target and the projectile (3.4) [3, 57].  

These results are presented in figure 31 for beam energy of 69 MeV/nucleon. 
They demonstrate a pure Coulomb mechanism of excitation of the 1/2− state of 11Be 
with the overhelming dominance of the E1 transition for impact parameters b > 15 
fm. With a decrease of b, the excitation probability of the 1/2− state sharply decreases 
due to the influence of the nuclear interaction between the target and the projectile 
[3].  
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Figure 31    The transition probabilities Plj(b) (multiplied by 2πb) during the 
collision of 11Be with 208Pb to the 1/2- state, calculated with optical potentials (full 

line) and with pure Coulomb excitation (dashed lines) in comparison with E1 dipole 
(dotted line) at 69 MeV/nucleon. 

 
The excitation probabilities Plj(b) (multiplied by 2πb) calculated at low 

colliding energies are presented in Fig.32. The probabilities calculated with including 
nuclear effects are smaller than those with a pure Coulomb interaction between the 
target and projectile.  It is seen that the lower the projectile energy, the more 
influence has a nuclear effect. For all considered projectile energies starting from b = 
15−20 fm the calculated excitation probabilities are determined by the Coulomb 
interaction between the projectile and the target. We may conclude that the choice of 
minimal impact parameter bmin= 12 fm as a cutoff approximation in the previous 
calculations for 72 MeV/nucleon at [13] was realistic, since the contribution of 
nuclear effects completely reduces the transition probability below b = 12 fm [57].  
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Figure 32    Excitation probabilities Plj(b) (multiplied by 2πb) of 11Be in collision 

with 208Pb to the 1/2- state, calculated with optical potentials (full line) and with only 
Coulomb excitation (dashed lines) at 30 and 5 MeV/nucleon. 

 
The calculated excitation cross section of the 1/2− state of 11Be (3.9) are given 

in Fig. 33 as a function of the projectile energy per nucleon for pure Coulomb and 
Coulomb plus nuclear induced excitations. A monotonic increase of the inelastic 
cross section (3.9) with decreasing projectile energy is observed. Also, it is noted that 
the difference between the calculation with only pure Coulomb projectile-target 
interaction and the one including also optical potentials increases for lower beam 
energies [3, 57].  
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Figure 33    Inelastic cross section to the ½- excited state of 11Be as a function of the 
projectile energy per nucleon   (in MeV/nucleon) in comparison with pure Coulomb 

(dashed line) and with including nuclear interactions (full line). 
 

The breakup probability per energy unit is given by  
 

  
                      ∑ ∑                                     (3.11) 

 
where k is the wave number [13] . It includes a complete distortion of the scattering 
of the projectile's eigenstates. Then the alternative formula for the breakup cross 
section is: 

                                       
            ∫                .                                (3.12) 

 
The breakup probabilities calculated with pure Coulomb (angular grid N=49) 

and adding nuclear (angular grid N=81) optical potential is illustrated in figure 34 as 
a function of the impact parameter b (fm) for a relative energies E=0.5 and 1,5 MeV 
at 72MeV/nucleon. The comparison of the breakup probabilities calculated with and 
without nuclear optical potential suggests that the cutoff impact parameter bmin should 
depend on energy in order to simulate nuclear effects. When we fit bmin to obtain the 
same breakup cross section in a pure Coulomb breakup approximation as in a 
calculation involving an optical potential the bmin values calculated at the energies of 
Fig. 34 are 12.5 fm at 0.5 MeV, 9.1 fm at 1.5 MeV. Therefore the choice of an 
adequate impact parameter lower bound bmin in a cutoff approximation is not 
straightforward. Because of the simplicity of the present treatment, the modeling of 
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the projectile-target nuclear interaction is better taken into account with an optical 
potential [13]. 

 

 

Figure 34   Breakup probability per MeV of 11Be on a 208Pb as a function of the 
impact parameter b (fm) for E=0.5 and 1,5 MeV at 72MeV/nucleon with a pure 

Coulomb and adding nuclear interactions. 
 

Overall, the influence of nuclear interaction to the Coulomb breakup of one-
neutron halo nuclei on a heavy target has been studied within the non-perturbative 
time-dependent approach for low beam energies (5–30 MeV/nucleon) including the 
low-lying resonances in different partial and spin states of Be. The theoretical model, 
developed in [1, 8, 9], has been extended to low-energy region. In the frame of this 
model we evaluated the breakup cross sections of 11Be on a heavy target of 208Pb at 
energies 5– 30 MeV/nucleon with Coulomb and nuclear interactions between 
projectile and target. The performed research of the projectile trajectories 
demonstrates that the semiclassical approach with linear trajectories of the projectile 
provides a satisfactory accuracy in calculating the breakup cross sections of 11Be up 
to 20 - 30 MeV/nucleon. However, a more adequate description is provided by the 
quantum-semiclassical approach for lower collision energies (5-10 MeV/nucleon). 
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CONCLUSION 

 

The aim of the work is a theoretical study of the Coulomb breakup of the 11Be 
halo nuclei on heavy target from intermediate (70 MeV/nucleon) to low energies (5 
MeV/nucleon) within non-perturbative time-dependent approach. The Coulomb 
breakup of halo nuclei is one of the main tools in studying the properties of halo 
nuclei and provides useful information about the halo structure. A theoretical study of 
exotic nuclei by quantum-mechanical approach is relevant in connection with the 
planned experiments aimed to investigate the properties of light nuclei on radioactive 
beams.  

The main results obtained in the dissertation:  

In the first part of the research the theoretical determination of the exotic 
structure, the description of the halo nucleus is considered. The peculiar properties of 
exotic systems and some definitions of halo nuclei from theoretical view are 
described. It also provides an overview of some experiments with nuclear reactions 
that are important in the field of study of this topic.  In this part of the thesis, the non-
perturbative time-dependent approach in studying the Coulomb breakup of one-
neutron halo nuclei is represented. The used three dimensional mesh approximations 
has the advantage that any local interaction is diagonal in such a representation. As a 
consequence, it allows avoiding the use of the multipole expansion of the time-
dependent Coulomb interaction between the projectile and the target and the straight-
line approximation for the projectile trajectory [25]. The splitting up procedure 
suggested in [12] and [62] permitted us to include correctly the resonances in 
different partial and spin states of 11Be [3].  

The following results were obtained: 
– a quantitative model has been developed to describe the Coulomb breakup of 

one-neutron halo nuclei of 11Be based on a nonperturbative solution of the time-
dependent Schrodinger equation; 

– the parameterization of potential between the neutron and 10Be core and the 
results of calculating the spectrum and resonant states of the 11Be, which is an 
important element of the computational scheme;  

– the convergence of the computational scheme and accuracy of the approach 
is demonstrated in all considered range of the beam energy including the low-lying 
resonances in different partial and spin states of 11Be. 

The second part of the research is devoted to the calculations of the breakup 
cross-section, an account of low-lying resonances and the investigation of nuclear 
contribution into breakup reaction. Also in the framework of the dissertation thesis it 
was investigated the validity of using the linear trajectory approach to describe the 
breakup process at low collision energies. 

As a result: 

– The relative energy spectra of the fragments (neutron and core) were 
calculated for the Coulomb breakup of 11Be on the 208Pb target in the wide range of 
beam energies 5 –70 MeV/nucleon;  
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– The influence of the resonant states 5/2+, 3/2− and 3/2+ of 11Be on the breakup 
cross section was taken into account. These results have been compared with 
experimental data [16, 17] available at 69 and 72 MeV/nucleon and with existing 
alternative theoretical calculations of other authors [11, 18, 19] at 20 and 30 
MeV/nucleon;  

– In the numerical calculations performed for the incident beam energies at 5–
30 MeV/nucleon, the contribution of the 5/2+ resonance state of 11Be to the breakup 
cross sections is clearly visible, while at energies of 69 and 72 MeV/nucleon, 
resonant states 3/2- and 3/2+ make the largest influence to breakup cross sections of 
11Be;  

– The contribution of the neutron interaction with the core in the final state and 
an account of  nuclear interaction between the target and projectile to the breakup 
cross sections was evaluated [57] at low beam energies (5 – 30 MeV/nucleon);  

–The inelastic cross sections for the excitation of the ½- state of 11Be in a 
collision with 208Pb target at low beam energies are computed with inclusion of 
Coulomb and nuclear interactions between the target and projectile;  

–The influence of the curvilinear trajectory for projectile motion is analyzed 
with decreasing the collision energies. It means that the effect of deformation of the 
projectile trajectory has been included within quantum quasiclassical approach. The 
differences between the linear and curvilinear (realistic) trajectories of the projectile 
in the analysis of the breakup reaction 11Be+208Pb->10Be+n+208Pb is about several 
percent in the energy range 30-20 MeV/nucleon, for 10 MeV/nucleon the discrepancy 
is 10% and reaches a value of more than 20% at 5 MeV/nucleon, which exceeds the 
effect of nuclear interaction. 

The results are published in the articles and conference papers. The tasks in 

the dissertation are fully solved: the inclusion of the resonant states of 11Be into the 
computational scheme leads to a significant improvement of the theoretical model, 
which gives a better agreement of the model description of the experimental data on 
the breakup cross sections [16, 17]. We summed up theoretical and practical 
experience of the carried out investigations and carefully research the processes of 
the Coulomb breakup of the halo nucleus of 11Be, also proposed a solution to 
insufficiently explored problems in the region of low energies. . A lot of graphs and 
tables were given to illustrate the results of the work.  

Recommendations. Summarizing, the results obtained in the dissertation our 
approach can potentially be used in further investigation of breakup reactions at low 
energies. In addition, the developed theoretical approach could easily deal with 
nuclear effects between the target and the projectile [57], which are supposed to be 
important in the breakup of halo nuclei on light targets. Another interesting, but more 
difficult application of the developed theoretical model may be breakup reactions of 
two-neutron halo nuclei.  
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In conclusion, I would like to express my hope that this dissertation work 
demonstrates new significant results and solutions, methods and concepts that 
contribute to the further development and deeper understanding of fundamental 
science. 
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APPENDIX A 

The system of units and some details of the solution of SE 

 

In this work in solving problems, the outside system of units are used, which 
are often used in nuclear physics: where the energy, potential and mass are measured 
in energy units - MeV, and the radial coordinate and radius of the nucleus in fm (1 fm 
= 10-15 m), and the nuclear constant ħc=197.328 MeV∙fm is used.  

1) When we solve the stationary Schrödinger equation:  
 [                             ]             .                                  (А1) 

 

 
In order to use the nuclear system of units, where r0=1 fm, E0=1 MeV, the Eq.(A1) is 

reduced to                 : 
 

[            (    )                  (    )    (     )]  (    )    (    )   (    )          

 

The Woods-Saxon potential is rewrited as:                         (    )   (    )     . Then the radial SE: 
 [                                                      ]                .            (A3) 

 

Here the reduced mass                            is then divided to the mass of 

neutron               . Taking into account corrections per unit, the constant 
in the equation (A3): 
                                                      (    )                                      .  

 
Thus, the radial SE reduced to the nuclear system of units, is written as: 
 [         (    )                     (    )       ]              .                     (A4) 

 

2) In solving the time-dependent Schrodinger equation: 
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        [            ]                                          (A5) 

 
it is also necessary to introduce a correction for units, where time is measured in [     ], since the energy is       , then                   ;  
                   (     )         (    )                             (A6) 

 
Thus the TDSE with the unit correction for time is written as:  
                            .                                        (A7) 

 
3) Here at Eq.(A7) the time dependent Hamiltonian h(r,t) is the Coulomb 

potential:  
                                      =                            .          (A8) 

 

The product of the charges of the target (208Pb) and the core (10Be) is reduced 
to the units as: 

                      |                |=                           =1.44                 (A9) 

  
The relative coordinate between the projectile and the target at Eq.(A8): 
                                                                (A10) 
 

Here, the impact parameter is measured in units of length [b]=1 fm, an initial velocity 
is reduced to the speed of light        : 
                                                            (A11) 

 

Since                                              
The initial velocity at the Eq.(A10) is given by the initial energy of the 

projectile beam:    √    (          )                                           (A12) 

Here   /A is the initial beam energy of the projectile,                  . For 
example if the beam energy is T=72 MeV/nucleon, then from the formula (A12), the 



79 

 

initial velocity is v=0.37 c. Table A.1 below shows the values of all velocities 
calculated by this formula for the entire range of beam energies studied in our work. 
 
Table A.1    Velocity values required in the computer program to set the initial beam 
energy. 
   , the beam energy, 

MeV/nucleon 
v/c, the initial velocity of 

the projectile   
72 0.37 
69 0.36 
30 0.25 
20 0.20 
10 0.15 
5 0.10 
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APPENDIX B 

Details of the inclusion of nuclear interaction into the computational  scheme 

 

In the semiclassical approximation, the relative motion of the projectile and the 
target is treated classically. Therefore the target can be seen as following a classical 
trajectory in the projectile rest frame. The influence of the target onto the two-body 
projectile is then modeled by a time-dependent potential  

 

V(   )=                                                          (B1) 

 
simulating the projectile-target interaction consists of the residual interaction between 
the projectile fragments and the target. Here R(t),         are the relative distances 
between the target and the projectile centre of mass, the core and the fragment 
respectively. As we consider a heavy target (208Pb), the interaction (B1) approximated 
by a pure Coulomb interaction. For studying the nuclear effects, we should compute 
another classical trajectory with including a nuclear term of interaction. 

The time-dependent potential with including the nuclear term of the projectile-
target interaction in the breakup cross sections: 

 

V(   )=                                                            = 

=                                                                   (B2) 

 

Here projectile-target potentials, describing the interaction of the core with the target            and the fragment with the target           are composed of the sum of real 
and imaginary potentials: 

                                                                 (B3)                (           )                      .              (B4) 

 

where f            = 
                 Woods-Saxon form factor, x stands for either 

core (c) or fragment (f).  

The core target and fragment target coordinates are: 

                                                   (B5) 
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where M=      is a nucleus mass. Further substituting the values of R(t) = b + 
v0t, and after mathematical transformations, the core-target coordinates: 

    =             √                                                                                        (B7) 

 

and the n-Pb (fragment-target) coordinates: 

                   √                             ,                                                          (B8) 

 
Substituting Eq. (3.4) with nuclear part of interaction to Eq.(2.1), we get the scheme 
for TDSE: 

 [                        ]           [                         ]       .                       (B9) 

 
 Here the potentials              , the wave functions in time evolution                  ,             are marked for conveniences. Then  
 [            ]      [            ]   .                 (B10) 

 
Rewriting (B10) in matrix form: 
 (                     ) (          ̅̅ ̅̅ ̅̅ ̅) = (                     ) (      ̅̅ ̅̅̅) .    (B11) 

    ̅̅ ̅̅̅          ̅̅ ̅̅ ̅̅ ̅                                         . The solution of (B11): 
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(          ̅̅ ̅̅ ̅̅ ̅)     ̂   (                     ) (      ̅̅ ̅̅̅)  ,                    (B12) 

 

 where   (                     )   ̂  

 
the inverse matrix of  ̂: 
: 

 ̂                             ( 
                            ) 

 
.                          ) 

 
Then substituting the matrices  ̂    and   ̂   :  
 

(          ̅̅ ̅̅ ̅̅ ̅)          (      )  (    )  ( 
      (      )     (      )  ) 

   

  (                     ) (      ̅̅ ̅̅̅).                    (B13) 

 
 (          ̅̅ ̅̅ ̅̅ ̅)   (      )  (    )   

  ( 
   (    )  (    )          (    )  (    ) ) 

 (      ̅̅ ̅̅̅)        
 

one can obtain the exact solution of the integral of TDSE - the outgoing wave 
function at each moment of time. The real part of wave function: 
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                              [(  (    )  (    ) )                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ],              (B15) 

 
The imaginary part of wave function is  
          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 

 (      )  (    )     [            (  (    )  (    ) )      ̅̅ ̅̅ ̅̅ ̅̅ ̅]     (B12) 
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APPENDIX C 

The application of breakup wave function in analyzing the breakup 

dynamics 

 

Let's write down the value of the coordinates x, y, z in spherical coordinates : 
                                            ,                                                (C1) 
 
The average value of the coordinate Z in the breakup process is: 
                          ,                                        (C2) 

 
where    - is the wave function corresponding to the breakup [12,13] of the system 
10Be+n: 
           =    ∑                                              (C3) 
 
which consists of the sums of two bound states of 11Be obtained from the solution of 
stationary Schrodinger equation:  
   ̂                                                            (C4) 
  
Substituting (2) into formula (1), we obtain the averaging of the coordinate over the 
breakup wave functions: 
                                                                                   .   (C5) 
 

The normalization of the breakup wave function is found from the probability 
Pb of the system to be in a bound state:  
                                                               (C6) 

 
where the probability is                    . The mean value of the 
coordinate x in breakup process is found in the same way. 

In figures C1 and C2 the averaging of the coordinates Z(t) and X(t) over the 
breakup wave functions are illustrated, the dynamics of the breakup components 
along the mean value of coordinates was integrated over a wide time interval   [                   ] with the step of             . The z axis is 
chosen along v0 and the x axis is in the collision plane, according to the bound-
neutron model with the straight-line trajectory R(t)=b+v0t of the 11Be projectile. The 
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impact parameter is chosen as b=12 fm and the selected relative velocity v=0.37c 
corresponds to 72 MeV per nucleon [12]. 
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Figure C1– The averaging of Z(t) coordinate in a breakup process 
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Figure C2– The averaging of X(t) coordinate in a breakup process 
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Now let’s determine the mean value of the transverse and longitudinal 
momenta between the emitted neutron (n) and the 10Ве core-nucleus in the breakup 
reaction 11Be+208Pb -> 10Be+n+208Pb: 

                                                                            (C7) 

 

where    is the Z component of the wave vector. In the first approximation of 
     , a 

first-order differential (FOD) operation: 
                    ,                                                  (C8) 

 
and for a higher accuracy, we write  it  in the second order differential (SOD) 
approximation: 
                       .                                                   (C9) 

 
Then in a FOD approximation, substituting (C8),  we obtain: 
 

           (                                                 )                     (C10) 

 
Here the breakup components are:                          and      =                     ,     – is a wave function of bound states, i.e. 
the ground (1/2+ ) and first excited (1/2-) states of 11Be.  

The average value of the momentum component could be calculated in 
coordinate space in a direct way:                                                                                    

 

as it is known that    ̂            ̂    ⃗    
In order not to lose accuracy during the numerical differentiation with respect 

to Cartesian coordinates, in equation (C11) we should calculate      and      

components through the matrix elements of the commutator [ ̂       ]: 
                      |[ ̂       ]|                                                 

 
From the Hamilton equation: 
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                                                                (C13) 

 
Derivative of Z coordinate with respect to time: 
                 ,                                              (C14) 

 

where        ∑                      written through Poisson brackets: 

                    ̂   ,                                             ) 
 

as   ̂                 . Or it is written with a a commutator [   ]  
 

    
            [   ]                                                      (C15) 

 
Then          [   ]    ̂     ̂  .                                     (C16) 

 

Thereby we calculate the average longitudinal and transverse momentum by   ̂       [   ]    or     ̂           and compare these formulas. Accordingly, the average 

value          as mentioned above, will be determined through the following 
formulas: 
                      |[ ̂       ]|                                            
                                                                                    

 
Then using transformations with FOD and SOD, the averaging of          

component: 
                                  (FOD)                 (C19)                                (SOD)                (C20) 

 
where     ,        and        is solved through formula (C2), respectively. 
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With the developed model, we now analyze the dependence of the mean 
transverse and longitudinal momenta by bound-neutron model  with a straight-line 
trajectory. In Figures C3 and C4, the calculated values of          and         
with a first order (FOD) and second order  (SOD) differential approximations (Eqs. 
(C19) and (C20)) are given as a function of time. 
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Figure C3 – Time dependence of the mean         longitudinal momenta in 
comparison of the first order (FOD) and second order  (SOD) differential 

approximations.  
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Figure C4 – Time dependence of the mean transverse         momenta in 
comparison of first order (FOD) and second order  (SOD) differential 

approximations.  
 

At table C1 below, the difference between our results and the previous ones 
[14] can be explained by the use of a more detailed radial grid and by the avoidance 
of a multipole expansion of the operator of the Coulomb interaction in the present 
calculations as in [14]. 
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Table C1 – Analyses of the longitudinal momentum between the neutron and the core 
nucleus in comparison with the works [12, 14]. 
 

t (       
 

rm=1200 fm 
Δx=0.0005 

Δt=0.02      
the calculations 
with the FOD  

rm=1200 fm 
Δx=0.0005 

Δt=0.02      
the calculations 
with the SOD 

rm=1200 fm 
Δx=0.0005 

Δt=0.02      
calculations of 
V.S. Melezhik 
[12] 

Calculations of 
T. Kido [14] 

10 0.0154 0.0076 0.0156 0.019 (*);  

0.026 (**) 

15 0.0207 0.0104 0.0159  

20 0.0241 0.0121 0.0158  

25 0.0266 0.0133 0.0154  

30 0.0276 0.0138 0.0148  

40 0.0298 0.0148   

 

(*) the same parameters of the Woods-Saxon potential were used in the calculations, 
which were used in the works of V.S. Melezhik and in our calculations; 
 (**) calculations were made for other parameters of the depth of the Woods-Saxon 
potential. 
 
 
 

 
 
 
 
 
 


